From sectional to Ricci curvature via symmetry

Lee Kennard (Syracuse University) Lawrence Mouillé (Trinity University) Jan Nienhaus (UCLA)

Workshop on Curvature and Global Shape

July 28 - August 1, 2025

Intermediate Ricci curvature

 $Ric = Ric_{n-1}$

Definition: For $x \in T_pM$ and a k-plane $\pi \subseteq (\mathbb{R}x)^{\perp}$, define

$$\operatorname{Ric}_k(x,\pi) = \sum_{i=1}^k \operatorname{sec}(x,y_i)$$

where $\{y_1, \ldots, y_k\}$ is any o.n.b. for π .

[Bishop-Crittenden '64], [Hartman '79], \sim 5 papers in the '80s, \sim 1 paper/year in the '90s, '00s, and '10s (many not really about Ric_k), and > 30 so far in the '20s.

Constant, non-negative, and positive curvature

 $\sec = \kappa$ implies M is a space form.

 $Ric_k = constant$ for any $1 \le k < n-1$ implies $sec = \kappa$.

 $\mathrm{Ric} = (n-1)\kappa$. . . many examples & no classification.

 $\sec \ge 0$ implies $\pi_1(M)$ is f.g., $\dim H^*(M^n; \mathbb{Z}_p) \le C(n)$, and $\hat{A} = 0$.

(Reiser-Wraith '23) Gromov's Betti bound fails for $\frac{n}{2} \lesssim k \leq n-1$.

Ric \geq 0 still yields structural results but the above statements have counterexamples: [Bruè-Naber-Semola '25], [Sha-Yang '89].

 $\mbox{dim} > 24 \mbox{: only known s.c. closed sec} > 0 \mbox{ examples are } \mathbb{S}, \mathbb{CP}, \mathbb{HP}.$

Surprising fact: For any $k \ge 1$ and dim > n(k), the only known simply connected, closed examples with $\text{Ric}_k > 0$ are \mathbb{S} , \mathbb{CP} , and \mathbb{HP} .

For dim $\lesssim 2k$, there are lots, e.g., Ric > 0 and sym. spaces [Amann-Quast-Zarei, Domínguez-Vázquez-González-Álvaro-Mouillé, R-W].

Positive Ric₂ with symmetry

Dimension four:

$$\mathbb{S}^2 \times \mathbb{S}^2$$
 admits $Ric_2 > 0 + SO(3)$ symmetry (Müter, Wilking)

(Neither Hopf's conj. nor Hsiang-Kleiner's theorem extends to Ric₂.)

$$\mathbb{S}^2\times\mathbb{S}^2$$
 and $\mathbb{CP}^2\#\overline{\mathbb{CP}^2}$ do not admit $Ric_2>0$ + $\,\mathcal{T}^2$ sym. [KM '24]

- Q: Does $\mathbb{CP}^2 \# \mathbb{CP}^2$ admit $Ric_2 > 0$ (with T^2 or sym.)?
- Q : Do $\mathbb{CP}^2\#\overline{\mathbb{CP}^2}$ admit $\mathrm{Ric}_2>0$ (with cohom 1 symmetry)?

Dimension five:

$$\mathbb{S}^2\times\mathbb{S}^3$$
 admits $\text{Ric}_2>0\,+\,\text{T}^2$ sym. (Wilking)

(Rong's classification of T^2 -actions on M^5 does not extend to Ric_2 .)

- Q: Does the non-trivial \mathbb{S}^3 -bundle over \mathbb{S}^2 admit $\mathrm{Ric}_2 > 0$?
- Q: Does the Wu manifold SU(3)/SO(3) admit $Ric_2 > 0$?
- Q: Does Ric₂ > 0 and T² symmetry imply $b_2(M) \le 1$?

Positive Ric₂ with symmetry, II

Maximal symmetry rank:

(Grove-Searle '94) M^n admits $\sec > 0 + \mathsf{T}^d$ symmetry $\Rightarrow d \leq \lfloor \frac{n+1}{2} \rfloor$. Moreover, equality only holds if M is diffeomorphic to S^n and $\mathbb{CP}^{n/2}$.

- (M '22, KM '24) $\mathrm{Ric}_2 > 0 + \mathsf{T}^d \Rightarrow$ same bound and homeo. rigidity.
 - Q: Equivariant diffeomorphism rigidity?
 - Q: Dimension 4?
 - Q: In dim 6, the classification needs $\chi(M) \neq 0$. Can we prove it?
- (M '22, $k \ge 3$) Ric_k > 0 and T^d symmetry $\Rightarrow d \le \left\lfloor \frac{n+k-2}{2} \right\rfloor$.
 - Q: Optimality holds for $k \le 3$. How about for k = 4, 5, ...?
 - Q: It also holds for k = n 1 (Reiser). How about for $k \le n 2$?

Hopf's Euler characteristic positivity conjecture

Conjecture (Hopf 1930s): $\sec > 0$ implies $\chi(M^{2n}) > 0$?

(K-Wiemeler-Wilking, N):
$$\sec > 0 + T^4$$
 symmetry $\Rightarrow \chi(M^{2n}) > 0$.

(KWW '25)
$$\sec > 0 + \mathsf{T}^9$$
 symmetry $+ \text{ c.i.g.} \Rightarrow \mathit{M}^{2n} \sim_{\mathbb{Q}} \mathbb{S}, \mathbb{CP}, \mathbb{HP}.$

How about $Ric_2 > 0$? We have **homogeneous examples**:

$$\mathbb{S}^3 \times \mathbb{S}^3$$
 (Wilking)

$$\mathbb{S}^7 \times \mathbb{S}^7$$
 (DeVito, Domínguez-Vázquez, González-Álvaro, Rodríguez-Vázquez)

Cor: $Ric_2 > 0$ does not imply $\chi(M^{2n}) > 0$ (even with T^4 symmetry)

Thm (KMN): If
$$M^{4n}$$
 has $Ric_2 > 0 + T^{10}$ symmetry, then $\chi(M) > 0$.

Thm (KMN): If also the action has c.i.g., then $H^{\text{odd}}(M; \mathbb{Q}) = 0$.

Proof sketch for Theorem 1 (geometric part)

Setup: M^{4n} has $Ric_2 > 0$ and isometric action by T^{10} .

(Mouillé) There exists T⁸ with non-empty fixed-point set.

We want to show $\chi(F) > 0$ for all components $F \subseteq M^{T^8}$.

(Borel formula) There is T^7 with $F \subseteq G = M_p^{T^7}$ with dim $G \equiv 0$ (4).

(S¹ splitting) There is $G \subseteq P \subseteq Q^m$ such that dim $P \equiv 0$ (4) and the inclusion $P \subseteq Q$ is $(\dim P - 1)$ -connected with codim $\leq \frac{1}{3} (m - 1)$.

(Partial Four Periodicity Theorem) P has four-periodic Betti numbers on degrees $1 \le * \le n-1$, so $b_1(P) \ge b_5(P)$ and $b_i(P) = b_{i+4}(P)$.

By Myers' theorem, $b_1(P) = 0$.

By four-periodicity, all $b_{4i+1}(P) = 0$.

By Poincaré duality, all $b_{4i+3}(P) = 0$.

By Connor-Floyd, F also has vanishing odd Betti numbers.

Proof sketch (algebraic part)

Periodicity Lem. (Wilking '03) If $P^{n-k} \subseteq Q^n$ is a $(\dim P)$ -connected inclusion of PD manifolds with $2k \le n$, then $H^*(Q; \mathbb{Z})$ is k-periodic.

Four Periodicity Thm. (K '13, Nienhaus Ph.D.): If $3k \le n$ or the normal bundle of P is complex, then $H^*(Q; \mathbb{Q})$ is 4-periodic.

Proof sketch (algebraic part), II

Corollary: If $P^{n-k} \subseteq Q^n$ is a $(\dim P)$ -connected inclusion of closed orientable manifolds with $3k \le n$, then $H^*(Q; \mathbb{Q})$ is 4-periodic.

(Connectedness Lemma + Partial Periodicity) sec > 0 + torus symmetry \Rightarrow periodicity in degrees $0 \le * \le n$. Ric₂ > 0 + torus symmetry does also but only on $1 \le * \le n - 1$.

What periodicity results carry over to partial periodicity?

(Nienhaus M.Sc.)

- 1) Everything in the special case of *irreducible* periodicity.
- 2) Periodic rings *decompose* into irreducibly periodic rings.

(KMN) If $P^{n-k} \subseteq Q^n$ is a $(\dim P - 1)$ -connected inclusion of closed s.c. manifolds with 3k < n - 1, then $H^{1 \le * \le n - 1}(Q; \mathbb{Q})$ is 4-periodic.

What about dim $M \equiv 2$ (4)?

Examples: We need to be careful: $S^p \times S^p$ admits $Ric_2 > 0$ and torus symmetry for $2p \in \{6,14\}$, so odd Betti numbers need not vanish.

Q: Does there exist M^{4n} with $Ric_2 > 0$ and $H^{odd}(M; \mathbb{Q}) \neq 0$?

Proof analysis: We can show $0 = b_1 = b_5 = \dots$ and $b_3 = b_7 = \dots$ for P, but we need something like the following for $Ric_2 > 0$:

(b_3 Lemma, [KWW]) If P^{4n+2} is a closed orientable manifold with 4-periodic \mathbb{Q} -cohomology, and if there is an S¹-action s.t. $b_1(F_i) = 0$ for all f.p.c. and some $F_0 \subseteq P$ is 7-connected, then $b_3(M) = 0$.

Q: The proof uses Bredon cohomology, but for $Ric_2 > 0$ we have less control over $H^{even}(M; \mathbb{Q})$. Can we still extend this lemma?

 $(\bar{b}_3 \text{ Lemma, [K '13]})$ If P^{4n+2} is a closed, orientable manifold with 4-periodic \mathbb{Z}_2 -cohomology, then $b_3(M;\mathbb{Z}_2)=0$.

Q: Is there a Four Periodicity Theorem with \mathbb{Z}_2 coefficients?

What about $Ric_k > 0$ for $k \ge 3$?

Examples: The only simply connected, closed manifolds M^n known to admit $Ric_k > 0$ with k << n are the rank one symmetric spaces.

Q: Does
$$\operatorname{Ric}_k > 0$$
 and $\operatorname{T}^{d(k)}$ symmetry imply $\chi(M^{4n}) > 0$?

Proof analysis \Rightarrow this needs new ideas:

The proofs for $k \le 2$ relied on the Connectedness Lemma being strong enough to relate b_1 (= 0 by Myers) to higher odd Bettis.

The best we expect from a fully general Partial Four Periodicity Theorem is 4-periodic Betti numbers on $k-1 \le * \le n-(k-1)$.

Q: For $k \ge 3$, can we prove $b_i(M) = 0$ for odd degrees $i \le k$?