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Abstract. A 1976 conjecture of Halperin on positively elliptic spaces has been confirmed
in formal dimensions up to 16. In this article, we shorten the proof and extend the result up
to formal dimension 20. We work with Meier’s algebraic characterization of the conjecture, so
the proof is elementary in that it involves only polynomial algebras, ideals, and derivations.

Introduction

We consider Artinian complete intersection algebras

H∗ = Q[x1, . . . , xk]/(u1, . . . , uk)

over the rationals with a grading concentrated in even degrees. Examples include the rational
cohomology of positively elliptic topological spaces, so for simplicity we refer to these algebras
as positively elliptic algebras (see Section 1 for definitions).

Positively elliptic spaces play an important role in rational homotopy theory. In fact, they
are the subject of a 1976 conjecture of Halperin that is listed as the first of seventeen open
problems in [FHT01, Chapter 39]. In 1982 Meier [Mei82] proved that this conjecture can be
reformulated algebraically as follows:

Conjecture (Halperin Conjecture). If H∗ is a positively elliptic algebra, then H∗ does not
admit a non-trivial derivation of negative degree.

The conjectured non-existence of derivations of negative degree arises in other contexts, in-
cluding singularity theory where one has the conjectures of Wahl (see [Wah83, GS, CCYZ20])
and Yau (see [CXY95, XY96]). For additional context, we refer to the survey [Hus18], the
papers [HYZ18, HYZ20, HYZ21], and references therein.

Evidence for Halperin’s conjecture includes proofs under geometric assumptions such as
when H∗ is the rational cohomology algebra of a Kähler manifold (see [Bla56, Mei83]),
a homogeneous space (see [ST87]), or a non-negatively curved Riemannian manifold with
large symmetry (see [GH87, GGKRW18, GWY19, Spi20]). It has also been verified under
algebraic assumptions such when H∗ at most three generators (see [Lup90, Che99]), relations
of sufficiently large degree (see [CYZ19]), or formal dimension at most 16 (see [AK20a]). In
this article, we expand on the latter result by shortening the proof and extending it as follows:

Theorem. Halperin’s conjecture holds in formal dimensions at most 20.

The proof simplifies and extends [AK20a], which covers dimensions up to 16. In fact, by
adopting the algebraic setup of [PP96, Che99, CYZ19] (see Sections 1 and 2) and proving
two new lemmas, we can efficiently prove all cases in dimensions up to 16 and all but six
exceptional cases in dimensions 18 and 20 (see Sections 3 and 4). The proof of those six
cases, and therefore of our main theorem, is completed in Section 5.
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1. Preliminaries

Let A = Q[x1, . . . , xk] denote the polynomial ring over the rationals on k variables. Assume
moreover that each xi has a positive, even degree assigned to it that is denoted by |xi|. This
induces a graded algebra structure on A =

⊕
n≥0A

n where the subspace An is spanned by
monomials xa11 · · ·x

ak
k satisfying a1|x1|+ . . .+ ak|xk| = n.

Next let I = (u1, . . . , uk) denote the ideal generated by homogeneous polynomials ui ∈
A|ui|, where |ui| denotes the degree of ui. Recall that the ui form a regular sequence if u1 ∈ A
is non-zero and if the image of ui in A/(u1, . . . , ui−1) is not a zero divisor for all 2 ≤ i ≤ k.

Definition 1.1. A positively elliptic algebra is the quotient Q[x1, . . . , xk]/(u1, . . . , uk) of a
graded polynomial ring over the rationals on generators with positive, even degrees by an
ideal generated by a regular sequence u1, . . . , uk of homogeneous polynomials.

Example 1.2. Singly generated algebras Q[x1]/(x
α
1 ) are positively elliptic. Doubly generated

algebras can be positively elliptic or not, as can be seen from the examples Q[x1, x2]/(x
2
1 −

x22, x1x2) or Q[x1, x2]/(x
2
1, x1x2). In the latter case, the image of x1x2 in Q[x1, x2]/(x

2
1) is a

zero divisor, so the ideal is not generated by a regular sequence.

Example 1.3. Positively elliptic algebras arise as the rational cohomology algebras of simply
connected, rationally elliptic topological spaces F with positive Euler characteristic (see
[FHT01, Proposition 32.10]). Such spaces are called F0 spaces or positively elliptic spaces
(see [Lup98, AK12, AK20b]), and they were conjectured by Halperin in 1976 to satisfy the
following: For any orientable fibration with fiber F , the Serre spectral sequence degenerates
at the E2-page (see [FHT01, Chapter 39]).

In 1982, Meier [Mei82, Theorem A] proved that Halperin’s conjecture can be reformulated
entirely algebraically in terms of negative degree derivations.

Definition 1.4. Given a positively elliptic algebra H∗, a derivation is a linear map δ :
H∗ → H∗ that increases degree by some integer |δ| ∈ Z and satisfies the Leibniz rule, that
is, behaves on products of homogeneous elements as follows:

δ(xy) = δ(x)y + (−1)|δ||x|xδ(y).

Example 1.5. The graded algebra H∗ = Q[x1, x2]/(x
2
1 − λx22, x1x2) with |x1| = |x2| = 2 and

λ ∈ Q \ {0} is a positively elliptic algebra and admits a non-trivial derivation δ of degree 2.
Indeed, if we define δ(x1) = x21 and δ(x2) = 0 and extend the definition by linearity and the
Leibniz rule, we obtain a well defined derivation on Q[x1, x2]. In addition, δ(x21 − λx22) and
δ(x1x2) are in the ideal (x21 − λx22, x1x2), so δ descends to a well defined derivation on H∗.

This example demonstrates the way we work with derivations on H∗. They correspond
to derivations on Q[x1, . . . , xk] that map the ideal (u1, . . . , uk) into itself. Throughout this
article, we use the same notation for the generators of Q[x1, . . . , xk] and their images in H∗.

This example also shows the necessity of the condition that δ have negative degree. We
recall Meier’s reformulation of Halperin’s conjecture from the introduction for easy reference:

Conjecture (Halperin Conjecture). Positively elliptic algebras do not admit non-trivial
derivations of negative degree.
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We close this preliminary section with two basic results (see [AK20a, Lemmas 11.1 and
11.3]). Together they imply Thomas’ result that the Halperin Conjecture holds when H∗ is
generated by at most two elements (see [Tho81]).

Lemma 1.6 (Land in Zero Lemma). For i > 0, a derivation of degree −i vanishes on H i.

Lemma 1.7 (k−1 Lemma). If δ is a derivation of negative degree on H∗ such that δ(xi) = 0
for k − 1 of the k generators xi, then δ = 0.

2. Degree type, formal dimension, and splittings

Given a positively elliptic algebra H∗ = Q[x1, . . . , xk]/(u1, . . . , uk), the degree type of H∗

is the sequence of even, positive integers denoted by

(|x1|, . . . , |xk|; |u1|, . . . , |uk|).
As Example 1.5 shows, the degree type (2, 2; 4, 4) can be realized in infinitely many ways,
even up to isomorphism. This is a general feature. Nevertheless, it is helpful to sort positively
elliptic algebras according to their degree types. In this section, we summarize previous work
on degree types as they relate to Halperin’s conjecture. In addition, we define pure models,
formal dimension, and splittings. The first basic result is the following. It is motivated by,
but not explicitly stated in, [FHT01, Section 32]:

Theorem 2.1 (Pure model). Given a non-zero positively elliptic algebra H∗, there exist
variables xi of positive, even degrees |xi| and homogeneous polynomials

ui ∈ Q≥2[x1, . . . , xk] = span{xa11 · · ·x
ak
k | a1 + . . .+ ak ≥ 2}

such that H∗ ∼= Q[x1, . . . , xk]/(u1, . . . , uk). Moreover these choices can be made to satisfy all
of the following:

(1) |x1| ≤ . . . ≤ |xk|.
(2) |u1| ≤ . . . ≤ |uk|.
(3) |ui| ≥ 2|xi| for all 1 ≤ i ≤ k.

In addition, the formal dimension

fdH∗ =
n∑
k=1

(|ui| − |xi|)

is independent of the choice of presentation.

Such a presentation of H∗ is called a pure model, and we assume from now on that our
presentations of positively elliptic algebras are pure models.

Remark 2.2. The presentation (i.e., choice of generators and relations) is not unique. For
example, a linear change of variables in generators of the same degree does not affect the
property of being a pure model or the degree type, nor does it change the fact that the
relations form a regular sequence. Somewhat more generally, we may add a polynomial of
generators of lower degree to another generator, so long as we preserve the homogeneity of
the generators. Similar comments apply to changes in our choice of relations.

Proof. By definition, there is some presentation of H∗ = Q[x1, . . . , xk]/(u1, . . . , uk) with
k ≥ 1. We may assume that k is minimal.

Clearly the uj do not have constant terms, since otherwise the ideal I = (u1, . . . , uk) is
the entire polynomial algebra. Moreover, if some uj has a linear term equal to a multiple of



4 LEE KENNARD AND YANTAO WU

xi, then the automorphism of Q[x1, . . . , xk] that replaces xi by uj is an isomorphism. Taking
the quotient by I gives rise to a presentation of H∗ on k− 1 generators. This contradicts the
minimality of k, so we have that each uj ∈ Q≥2[x1, . . . , xk].

Next, we may relabel the generators and relations so that |x1| ≤ . . . ≤ |xk| and |u1| ≤
. . . ≤ |uk|. The final condition that |ui| ≥ 2|xi| for all i follows by the result of Friedlander
and Halperin below (Theorem 2.4). Indeed, this result implies that some relation (and hence
uk) has degree at least twice |xk|, that at least two relations (and hence uk−1 and uk) have
degree at least twice |xk−1|, and so on.

For the last claim, we note that H∗ satisfies Poincaré duality (see [Hal77, Section8]). This
means that there exists n ≥ 0 such that H i = 0 for i > n and Hn ∼= Q and that the product
map H i×Hn−i → Hn ∼= Q is a non-degenerate bilinear pairing for all 0 ≤ i ≤ n. This integer
n is called the formal dimension (or socle degree) and is denoted by fdH∗ (cf. [CM20]). For
our purposes, we note that Hn is generated by the Jacobian det (∂ui/∂xj) (see, for example,
the remarks following Theorem B in [ST87]). Therefore the formula in the theorem equals n
and is therefore an invariant of the positively elliptic algebra. �

Example 2.3. The positively elliptic algebra H∗ = Q[x1, x2]/(x
2
1 − x2, x32) with |x1| = 2 and

|x2| = 4 can be more efficiently presented as H∗ ∼= Q[x]/(x6). Indeed, an isomorphism is
given by mapping x1 7→ x and x2 7→ x2.

A consequence of Theorem 2.1 is that any given formal dimension only allows for finitely
many degree types. Indeed,

fdH∗ =
k∑
i=1

|ui| − |xi| ≥
k∑
i=1

|xi| ≥ 2k,

so k ≤ 1
2

fdH∗, the possible degrees |xi| are similarly bounded, and therefore the possibilities
for the |ui| are finite.

A further restriction on the degree types is the following result due to Friedlander and
Halperin (see [FH79, Corollary 1.10] or [FHT01, Proposition 32.9]):

Theorem 2.4 (Characterization of degree types). A sequence

(A1, . . . , Ak;B1, . . . Bk)

of positive, even integers arises as the degree type of some positively elliptic algebra if and
only if the following holds: For all 1 ≤ l ≤ k and 1 ≤ i1 < . . . < il ≤ k, there exist
1 ≤ j1 < . . . < jl ≤ k such that Bj1 , . . . , Bjl can be expressed as linear combinations of the
form λ1Ai1 + . . .+ λlAil with non-negative integer coefficients satisfying λ1 + . . .+ λl ≥ 2.

To illustrate, the degree type (A1, A2;B1, B2) = (2, 4; 4, 10) does not satisfy this con-
dition since A2 = 4 does not properly divide any of the Bj. Similarly, the degree type
(2, 2, 4, 4; 4, 6, 8, 10) does not satisfy the condition and therefore does not arise as the degree
type of a positively elliptic algebra.

Definition 2.5. A sequence (A1, . . . , Ak;B1, . . . , Bk) as in Theorem 2.4 satisfies the condi-
tion SAC(Ai1 , . . . , Ail) if there exist Bj1 , . . . , Bjl as in the theorem.

In [FH79], the condition that SAC(Ai1 , . . . , Ail) holds for all possible subsequences 1 ≤
i1 < . . . < il ≤ k is called the Strong Arithmetic Condition (SAC). The examples after the
theorem fail the SAC(4) and the SAC(4,4), respectively, and therefore fail the SAC.
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Next we discuss Markl’s result, which is crucial to our inductive arguments over the formal
dimension. One result we need in the proof of the main theorem is Lemma 2.8 below.

Definition 2.6 (Split positively elliptic algebras). A positively elliptic algebra H∗ splits if
it has a presentation as a pure model

H∗ ∼= Q[x1, . . . , xk]/(u1, . . . , uk)

such that, for some 0 < l < k, the polynomials u1, . . . , ul only depend on x1, . . . , xl.

Note that, in this definition, H∗ has a positively elliptic subalgebra

K∗ ∼= Q[x1, . . . , xl]/(u1, . . . , ul)

and a positively elliptic quotient algebra Q∗ = H∗/K∗ defined by Qn = Hn/(K+H∗)n, where
K+H∗ denotes the vector subspace spanned by products of an element of K∗ of positive
degree and an element of H∗. Note that

Q∗ ∼= Q[x̄l+1, . . . , x̄k]/(ūl+1, . . . , ūk),

where the bars denote images under the projection map H∗ → Q∗. Also note that

fdH∗ = fdK∗ + fdQ∗

and that both K∗ and Q∗ have formal dimension strictly less than fdH∗.
In the proof of the Halperin conjecture up to dimension 20, we will proceed by induction

over the formal dimension. In particular, the following is an important tool for dealing with
the split case (see [Mar90, Theorem 1]):

Theorem 2.7 (Markl’s theorem). Let H∗ be a positively elliptic algebra with a non-zero
derivation of negative degree. If H∗ splits as above, then K∗ or Q∗ also has a non-zero
derivation of negative degree.

Markl’s theorem holds in greater generality, but this statement is all we need. As the proof
also simplifies somewhat in this case, we include it here.

Proof. Assume that H∗ = Q[x1, . . . , xk]/(u1, . . . , uk) is a pure model for a positively elliptic
algebra H∗ with the property that u1, . . . , ul ∈ Q[x1, . . . , xl] for some 0 < l < k. Let K∗ =
Q[x1, . . . , xl]/(u1, . . . , ul), and suppose that neither K∗ nor Q∗ = H∗/K∗ admit a non-zero
derivation of negative degree. Finally, let δ be a derivation of negative degree on H∗, and
note that our task is to show that δ = 0.

First, since the degrees of the xi are increasing, the derivation δ restricts to a derivation
on K∗. By the assumption on K∗, we have

δ(x1) = . . . = δ(xl) = 0.

Next, fix any vector space basis {ξα} for K∗ consisting of monic polynomials ξα in the
variables x1, . . . , xl. For y ∈ H∗, there exist polynomials δα(y) in xl+1, . . . , xk such that

δ(y) =
∑
α

ξαδα(y).

We claim that each of the maps

δ̄α : H∗/K∗ → H∗/K∗

ȳ 7→ δα(y)

is a well defined linear map.
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If this claim holds, then it is straightforward to see that δ̄α is a derivation of negative
degree on H∗/K∗ and hence vanishes by assumption. In particular, δα(y) = δ̄α(ȳ) = 0 for all
α, which implies that δα(y) is both a polynomial in xl+1, . . . , xk and in the ideal (x1, . . . , xl)
for all α. It follows that δα = 0 for all α and hence that δ = 0, as required.

It suffices to prove the claim, and for this it suffices to show that δα maps the ideal
(x1, . . . , xl) to zero. Fix

z =
l∑

i=1

xizi

in this ideal. Applying δ to both sides of this equation and noting that δ is a derivation on
H∗ that vanishes on x1, . . . , xl, we obtain∑

α

ξαδα(z) =
l∑

i=1

xi
∑
β

ξβδβ(zi).

Extracting the coefficients of ξα on both sides, we obtain

δα(z) =
∑
xi|ξα

δβ(α,i)(zi),

where the sum runs over 1 ≤ i ≤ l such that xi divides ξα, and where β(α, i) is the index for
which xiξβ(α,i) = ξα.

If α is the index corresponding to the constant monomial ξα = 1, then the sum on the
right-hand side is trivial and we find that δα(z) = 0. As z was arbitrary, this proves that
δα maps the ideal (x1, . . . , xl) to zero for this particular value of α. Proceeding by induction
over the degree of ξα, we note that the right-hand side once again vanishes by the induction
hypothesis since ξβ(α,i) has smaller degree than ξα. Hence δα(z) = 0, and so by induction we
conclude that δα vanishes on the ideal (x1, . . . , xl), as required. �

In the proof of our main theorem, we induct over the formal dimension. By Markl’s the-
orem, the result holds when H∗ splits since the result holds inductively for smaller formal
dimensions. Therefore it is useful to have conditions that imply the existence of splittings.

Lemma 2.8 (Degree Inequality). Let H∗ = Q[x1, . . . , xk]/(u1, . . . , uk) be a positively elliptic
algebra that does not split. The following hold:

(1) If i < k, then |ui| ≥ |x1|+ |xi+1|.
(2) If δ(x2) = λxα1 6= 0 for some λ ∈ Q, where δ is a derivation on H∗ with negative

degree, then |u1| ≥ |x1|+ |x3|.

Proof. The first claim is a restatement of [AK20a, Lemma 11.4]. It follows since |ui| <
|x1|+ |xi+1| for some i implies that u1, . . . , ui ∈ Q≥2[x1, . . . , xk] are polynomials in x1, . . . , xi
for degree reasons. Hence x1, . . . , xi generate a non-trivial subalgebra, a contradiction.

The second claim is implicit in the proof of [AK20a, Lemma 11.5]. Suppose that δ(x2) =
λxα1 6= 0 for some λ ∈ Q and α ≥ 1. Suppose for the purpose of contradiction that |u1| <
|x1|+ |x3|. As in the previous paragraph, we conclude that u1 is a polynomial in x1 and x2.
Write u1 =

∑r
i=0 pi(x1)x

i
2. Since δ(u1) is in the ideal (u1, . . . , uk) and has degree less than

any of the ui, we have δ(u1) = 0. On the other hand,

δ(u1) =
r∑
i=0

pi(x1)δ(x
i
2) =

r∑
i=1

ipi(x1) (λxα1 )xi−12 ,
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so pi(x1) = 0 for all i ≥ 1. Hence u1 = p0(x1), x1 generates a non-trivial subalgebra of H∗,
and we have a contradiction. �

We close this section with a proposition showing how the Degree Inequality and the other
preliminary facts we have established work together with the upper bound on the formal
dimension to rule out a large number of cases.

Proposition 2.9. Let H∗ = Q[x1, . . . , xk]/(u1, . . . , uk) be a positively elliptic algebra with
no non-trivial subalgebra and fdH∗ ≤ 20. If there exists a non-zero derivation of negative
degree and |xk−1|+ |xk| ≥ 12, then the degree type is

(2, 4, 6, 6; 6, 8, 12, 12) or (2, 2, 6, 6; 4, 8, 12, 12).

Proof. First, suppose that k ≤ 3. By the Land in Zero Lemma, δ(x1) = 0, so we may assume
k ≥ 2. Moreover by the k − 1 Lemma, we may assume that k = 3 and that δ(x2) and δ(x3)
are linearly independent since otherwise we could choose new generators so that δ(x2) = 0.
In particular, it follows for degree reasons that |x1| < |x2| < |x3|. On one extreme, these
degrees could be 2, 4, and 6, but this contradicts the assumption that |xk−1|+ |xk| ≥ 12. We
may assume therefore that |x3| ≥ 8. We put this into the formula for the formal dimension
in Theorem 2.1 and we estimate the summands using the Degree Inequality (Lemma 2.8):

fdH∗ =
3∑
i=1

(|ui| − |xi|) ≥ |x3|+ max(|x1|+ |x3| − |x2|, |x2|) + |x3|.

Since the maximum is at least the average, this implies fdH∗ > 20, a contradiction.
Next, suppose that k ≥ 4 and |xk| ≥ 8. Using the Degree Inequality to estimate |ui| for

i ≤ k − 1 and the estimate |uk| ≥ 2|xk|, we obtain

fdH∗ ≥
k−1∑
i=1

(|x1|+ |xi+1| − |xi|) + |xk| = (k − 2)|x1|+ 2|xk| ≥ 20.

Hence equality holds everywhere, and we have k = 4, |x1| = 2, |x4| = 8, and |u3| = |x1| +
|x4| = 10. Now |x3| ≤ 1

2
|u3|, so |x3| ≤ 4. Since additionally |x3| ≥ 4 by the Land in Zero and

k − 1 Lemmas, we have |x3| = 4. Using equality in the above estimate once more, we have
|u2| = |x1|+ |x3| = 6, so we have a contradiction to the SAC(4, 8) condition since u4 is the
only relation properly divisible by four.

Finally, suppose that k ≥ 4 and |xk| ≤ 6. By the assumption in the proposition, we have
|xk−1| = |xk| = 6. Estimating as in the previous case, except replacing the estimate for the
i = k − 1 term by the estimate |uk−1| ≥ 2|xk−1|, we see that

fdH∗ ≥ (k − 3)|x1|+ 2|xk−1|+ |xk| ≥ 2 + 3(6) = 20.

Hence equality holds, and the degree type is of the form

(2, A2, 6, 6; 2 + A2, 8, 12, 12)

where A2 ∈ {2, 4}. These two possibilities correspond to the two degree types in the conclu-
sion of the proposition, so the proof is complete. �
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3. The Large Relations Lemma

In this section, we prove the Large Relations Lemma and Proposition 3.2, which verifies
the Halperin conjecture in formal dimensions up to 20 in all but three exceptional cases when
the degrees of the two largest generators satisfy |xk−1|+ |xk| ≤ 8.

Lemma 3.1 (Large Relations Lemma). Let H∗ ∼= Q[x1, . . . , xk]/(u1, . . . , uk) be a positively
elliptic algebra that does not split. Assume that H∗ admits a derivation δ of degree −2 such
that the map δ : H4 → H2 has rank m ≥ 1.

Let gi denote the number of generators with degree i, and let rj denote the number of
relations with degree j. The following hold:

(1) If g6 + g10 + g14 + . . . = 0, then

r12 + r16 + . . . ≥ (k − g2 − g4) + max(1,m− r4).

(2) If g6 + g10 + g14 + . . . ≥ 1 and δ2(H6) = 0, then

r10 + r12 + . . . ≥ (k − g2 − g4) + max(1,m− r4).

In particular, |uk| ≥ 12 in the first case and |uk−1| ≥ 10 in the second.

Proof. We prove the claims simultaneously. By the Land in Zero Lemma, we may assume
that δ(xi) = 0 for 1 ≤ i ≤ g2. In addition, we may change basis so that

δ(xg2+i) =

{
xi if 1 ≤ i ≤ m
0 if m < i ≤ g4

Finally, if xh is a generator in degree six, then the condition δ2(H6) = 0 implies that δ(xh)
has no xg2+i term with 1 ≤ i ≤ m.

Let {uj|j ∈ J} denote the relations with degree 8. Write each of these as

uj = pj(xg2+1, . . . , xg2+m) + qj

where pj is a quadratic polynomial and where qj is in the ideal

I0 = (x1, . . . , xg2) + (xg2+m+1, . . . , xg2+g4).

Fix J ′ ⊆ J such that {pj | j ∈ J ′} is a basis for the span of {pj | j ∈ J}.
We claim that |J ′| ≤ m− 1, and we prove this by contradiction. Note that δ(H2) = 0 and

δ2(H4) = 0 by the Land in Zero Lemma. In addition, δ2(H6) = 0 by assumption in Case (2)
of the lemma and for degree reasons in Case (1) since there are no generators in degree six.
Noting next that δ vanishes on the generators of the ideal I0, we have δ2(qj) = 0 and hence

δ2(uj) = 2pj(x1, . . . , xm)

for j ∈ J ′. Now δ2(uj) has degree four and lies in the ideal (u1, . . . , uk). Hence pj(x1, . . . , xm)
lies in the r4-dimensional span of {ui | |ui| = 4}. Since the polynomials pj with j ∈ J ′ are
linearly independent, we may perform a change of basis on the degree-four relations ui such
that {u1, . . . , u|J ′|} = {pj(x1, . . . , xm) | j ∈ J ′}. If |J ′| ≥ m, then u1, . . . , um ∈ Q[x1, . . . , xm]

and hence that x1, . . . , xm generate a subalgebra K∗. Since moreover 1 ≤ m ≤ k
2
, we see that

H∗ splits, and we have a contradiction to the assumptions of the lemma.
We may assume now that |J ′| ≤ m − 1. By the argument in the previous paragraph,
|J ′| ≤ min(m− 1, r4) by choice of J ′. We can perform a change of basis on the uj for j ∈ J
so that pj = 0 for j ∈ J \ J ′.
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To finish the proof of Claim 1, consider the ideal

I = I0 + ({uj | j ∈ J ′}) + ({uj | |uj| ∈ {12, 16, . . .}) .
If a relation ui has degree less than eight or not divisible by four, then it lies in I0 for
degree reasons since there are no generators in degrees 6, 10, etc. If |ui| = 8, then it lies in
I0 + ({uj | j ∈ J ′}) by choice of J ′. Finally it is clear that ui ∈ I for all other relations ui.
Hence H∗ projects onto Q[x1, . . . , xk]/I. Since H∗ is finite-dimensional, I must have at least
k generators. Therefore

(g2 + g4 −m) + min(m− 1, r4) + (r12 + r16 + . . .) ≥ k,

which implies the desired bound in Claim 1.
To finish the proof of Claim 2, we use a similar argument with I replaced by

I = I0 + ({uj | j ∈ J ′}) + ({uj | |uj| ∈ {10, 12, . . .}) .
It is clear that relations of degree four or degree eight or larger lie in I. Relations of degree six
are also in I0 and hence in I because they are polynomials in Q≥2[x1, . . . , xk] (see Theorem
2.1). Hence again all relations are in I, and the claim follows as before. �

Next, we apply Lemma 3.1 to prove our main theorem when |xk−1| + |xk| ≤ 8 in all but
three exceptional cases.

Proposition 3.2. Let H∗ be a positively elliptic algebra that does not split. If H∗ admits a
non-zero derivation of negative degree and |xk−1| + |xk| ≤ 8, then either fdH∗ > 20 or the
degree type is one of the following:

(2, 2, 4, 4; 4, 6, 8, 12), (2, 2, 4, 4; 4, 8, 8, 12), or (2, 2, 2, 4, 4; 4, 4, 6, 8, 12),

Proof. By the Land in Zero and k−1 Lemmas (1.6 and 1.7), we may assume that |xk−1| ≥ 4
since otherwise δ vanishes on the first k − 1 generators and hence on all of them. By the
assumptions of the proposition, we have |xk−1| = |xk| = 4. Similarly, we may assume that δ
has degree −2 and that the map δ : H4 → H2 has rank m ≥ 2.

By Lemma 3.1, |uk| ≥ 12, and this forces the formal dimension

fdH∗ =
k∑
i=1

(|ui| − |xi|)

to be large. Indeed, let g4 ≥ m be the number of generators of degree four. We have |xi| = 2
for i ≤ k−g4 and |xi| = 4 otherwise. Additionally the Degree Inequality (Lemma 2.8) implies

|ui| − |xi| ≥ |x1|+ |xi+1| − |xi|
for all 1 ≤ i ≤ k − g4, and Theorem 2.1 implies

|ui| − |xi| ≥ |xi| ≥ 4

for i > k − g4. Putting these into the above formula and summing gives the estimate

fdH∗ ≥ (2k − 2g4 + 2) + (4g4 − 4) + (12− 4) = 2k + 2g4 + 6.

If g4 ≥ 3, then k ≥ m + g4 ≥ 5 and hence fdH∗ > 20. This is what we wish to show, so
we may assume that g4 = m = 2. The degree type is of the form

(2, . . . , 2, 4, 4;B1, . . . , Bk)
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with Bi ≥ 2|xi| = 4 for 1 ≤ i ≤ k − 3, Bk−2 ≥ |x1| + |xk−1| = 6, Bk−1 ≥ 2|xk−1| = 8, and
Bk ≥ 12. Going back to the estimate on fdH∗, we see that k ∈ {4, 5}.

If k = 4, then fdH∗ =
∑4

i=1Bi − 12 ≥ 18. Since we may assume that fdH∗ ≤ 20, it
follows either that we have equality in all four of the lower bounds on the Bi or that we have
equality in three of the four bounds and we are off by two in the fourth. This gives rise to
five possibilities for the degree type. Two of these are ruled out by the SAC(4,4) condition,
one is ruled out by the bound r12 + r16 + . . . ≥ m− r4 from Lemma 3.1, and the remaining
two appear in the conclusion of the proposition.

If instead k = 5, then we estimate as above: fdH∗ =
∑5

i=1Bi − 14 ≥ 20. Hence equality
holds in all five of the lower bounds on the Bi, and we find that the degree type is the last
one shown in statement of the proposition. �

4. The Top-to-Bottom Lemma

In this section, we prove the Top-to-Bottom Lemma and use it to prove Proposition
4.2, which verifies the Halperin conjecture for formal dimensions up to 20 in all but one
exceptional case when the largest two generator degrees satisfies |xk−1|+ |xk| = 10.

Lemma 4.1 (Top-to-Bottom Lemma). Let H∗ ∼= Q[x1, . . . , xk]/(u1, . . . , uk) be a positively
elliptic algebra that does not split and that satisfies |uk| < 3|xk|. If there exists a derivation
δ on H∗ and l ≥ 1 such that the map

δl : H |xk| → H |x1|

exists and is non-zero, then in fact this map has rank at least two.

This lemma is reminiscent of the k−1 Lemma, which states that a derivation with negative
degree is non-zero only if it has rank at least two.

Proof. Without loss of generality, we may assume that |δ| divides |xk| − |x1|, and we may
fix l ≥ 1 such that δl maps H |xk| into H |x1|. We may also assume that this map has rank
exactly one and change basis, if necessary, so that δl(xk) = x1 and that δl(xi) = 0 for i < k.

Consider the ideal in H∗ generated by x1, . . . , xk−1. Since H∗ is finite-dimensional, there
exists some relation ui not in this ideal. Since |ui| < 3|xk|, we must have

ui = λx2k + xkf + g

for some non-zero λ ∈ Q and some f, g ∈ Q[x1, . . . , xk−1]. By scaling ui, we may assume
λ = 1, and then completing the square and replacing xk by xk + 1

2
f , we may assume f = 0.

We apply δ2l to this equation. On the left-hand side, we see that δ2l(ui) is in the ideal
(u1, . . . , uk) and has (minimal) degree 2|x1|. In particular, δ2l(ui) is a rational linear combi-
nation of the uj with minimal degree. Hence either it is zero or it is u1 after possibly replacing
u1 by this linear combination.

On the right-hand side, note that

δ2l(x2k) =

(
2l

l

)(
δlxk

)2
=

(
2l

l

)
x21.

If it is the case that δ2l(g) = 0, then we have that u1 ∈ Q[x1], a contradiction to the
assumption that H∗ does not split. Hence we may assume that δ2l(g) 6= 0.
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Now g is a polynomial in x1, . . . , xk−1, so there exists a monomial xi1 · · · xip appearing in
g such that

δ2l(xi1 · · ·xip) 6= 0.

Furthermore, by the Leibniz rule, there exists j1 + . . .+ jp = 2l such that

δj1(xi1) · · · δjp(xip) 6= 0.

Each term in this product is non-zero and hence has degree at least |x1|. Summing, we have

p|x1| ≤ (|xi1|+ j1|δ|) + . . .+
(
|xip |+ jp|δ|

)
= 2|xk|+ 2l|δ| = 2|x1|.

Hence p ≤ 2. At the same time, xk has maximal degree among the generators, so p = 2 and
equality holds in the estimate above. It follows that some δl(xi) 6= 0 with xi 6= xk, and this
implies a contradiction to our choice of basis at the beginning of the proof. �

Using the Top-to-Bottom Lemma, we can nearly prove the theorem under the condition
|xk−1|+ |xk| = 10. The exceptional case given in Proposition 4.2 is proved in Section 5.

Proposition 4.2. Let H∗ be a positively elliptic algebra that does not split. If there exists a
non-zero derivation of negative degree and |xk−1| + |xk| = 10, then either fdH∗ > 20 or the
degree type is equal to

(2, 2, 2, 4, 6; 4, 4, 6, 10, 12).

Proof. Since |xk−1| and |xk| are positive, even numbers summing to 10, and since |xk−1| 6= 2
by the Land in Zero and k − 1 Lemmas, we may assume that |xk−1| = 4 and |xk| = 6. In
addition, we may assume that

δ(xk−1) = x1

up to a change in basis. Note also that k ≥ 3.
First suppose that |uk| > 12. By the condition SAC(6), there is a relation whose degree

is properly divisible by six. In particular, |uk−1| ≥ 12 or |uk| ≥ 18, and hence

k∑
i=k−1

(|ui| − |xi|) = |uk−1|+ |uk| − 10 ≥ 16.

Note also that
|uk−2| − |xk−2| ≥ max (|xk−2|, |x1|+ |xk−1| − |xk−2|) .

Since the maximum is at least the average, and since the left-hand side is even, this is at least
four. Substituting these estimates into the formula for the formal dimension and applying
the Degree Inequality, we have

fdH∗ ≥
k∑

i=k−2

(|ui| − |xi|) ≥ 20.

Since we may assume that fdH∗ ≤ 20, we have equality everywhere. In particular, k = 3
and |u1| − |x1| = 4. But the k − 1 Lemma implies that δ(x2) = λx1 6= 0, so Part 2 of the
Degree Inequality implies that |u1| ≥ |x1|+ |x3|. This is a contradiction, and we may assume
that |uk| = 12.

The Top-to-Bottom Lemma implies that δ2(xk) = 0. After replacing xk by something of
the form xk − l(x1, . . . , xk−2)xk−1, we may assume that

δ(xk) = p(x2, . . . , xk−2) 6= 0.
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In particular, k 6= 3, since otherwise this expression implies that δ(x3) = 0, a contradiction
to the k − 1 Lemma. Assume then that k ≥ 4.

The condition δ2(xk) = 0 also means that we can apply the the second part of Large
Relations Lemma (Lemma 3.1). Hence |uk−1| ≥ 10.

Suppose first that k ≥ 5. Since |uk−1| − |xk−1| ≥ 6 and |uk| − |xk| = 6, we can estimate
the formal dimension as above to obtain

fdH∗ ≥ (k − 3)|x1|+ 4 + 6 + 6 ≥ 20.

Hence we may assume that equality holds in these estimates. It follows that the degree type
is of the form

(2, A2, A3, 4, 6; 2 + A2, 2 + A3, 6, 10, 12).

But now the bounds |ui| ≥ 2|xi| for all i imply that A3 = 2 and A2 = 2, so this is the
exceptional case given in the conclusion of the proposition.

We may assume therefore that k = 4. In particular,

δ(x3) = x1 and δ(x4) = p(x2),

where p is linear if |x2| = 4 and quadratic if |x2| = 2.
Since H∗ is finite-dimensional, not all of the ui lie in the ideal I = (x1, x2, x4), since

otherwise H∗ projects onto the infinite-dimensional algebra Q[x1, . . . , x4]/I. Hence there
exists a relation (up to scaling) of the form

ui = x23 + q or ui = x33 + q

for some q ∈ I. For degree reasons, the structure of δ implies that q ∈ ker(δ2) in the first
case or q ∈ ker(δ3) in the second. Applying δ2 or δ3, we see that

2x21 = δ2(ui) or 6x31 = δ3(ui).

Since δ preserves the ideal (u1, . . . , u4), the right-hand side of each expression lies in this
ideal. In the first case, we may perform a change of basis on the degree four ui to obtain
u1 = 2x21. This gives rise to a splitting by the subalgebra generated by x1, a contradiction to
the assumptions of the proposition.

Similarly, the second case gives rise to a contradiction if it is possible to change basis so
that some uj = 6x31. Therefore we may assume that

6x31 =
∑

ljuj

where the lj are linear polynomials in the degree two generators and the uj are degree
four relations. Now if u1 is the only one degree four relation, then u1 is a multiple of x21,
which is again a contradiction. But then we must have that |u1| = |u2| = 4, so we have that
|u2| < 6 = |x1|+|x3|. By the Degree Inequality, it follows that x1 and x2 generate a subalgebra
of H∗ that induces a splitting. This is a contradiction, so the proof is complete. �

5. Proof of the main theorem

In this section, we finish the proof of the Halperin Conjecture for formal dimensions at
most 20. We are given a positively elliptic algebra

H∗ ∼= Q[x1, . . . , xk]/(u1, . . . , uk)

as in Theorem 2.1, and we assume the existence of a non-zero derivation δ on H∗ of negative
degree. We seek a contradiction.
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If the formal dimension is two, then Theorem 2.1 implies that k = 1 and the Land in
Zero Lemma implies that δ = 0, a contradiction. Hence we may inductively assume that
2 < fdH∗ ≤ 20 and the Halperin Conjecture holds for formal dimensions less than fdH∗.

By Markl’s theorem, we may assume that H∗ does not split. In particular, Propositions
2.9, 3.2, and 4.2 apply, and together they imply that the degree sequence of H∗ must fall
into one of six exceptional cases. To finish the proof, therefore, it suffices to prove Halperin’s
conjecture in each of these six cases.

We first consider the three exceptional cases that arose in the case |xk−1| + |xk| = 8 (see
Proposition 3.2):

Proposition 5.1. If H∗ is a positively elliptic algebra that does not split and has degree type

(2, 2, 4, 4; 4, 6, 8, 12), (2, 2, 4, 4; 4, 8, 8, 12), or (2, 2, 2, 4, 4; 4, 4, 6, 8, 12),

then there does not exist a non-zero derivation with negative degree.

Proof. We adopt the notation from Lemma 3.1, with a slight modification. We may assume

δ(xk−1) = x1 and δ(xk) = x2

and that δ(xi) = 0 for 1 ≤ i ≤ k − 2. In addition, after possibly swapping the two degree
eight relations in the second case, we may assume that

uk−1 = pk−1(xk−1, xk) + qk−1

with pk−1 6= 0 and qk−1 ∈ (x1, . . . , xk−2). Indeed, if pk−1 = 0 (and pk−2 = 0 in the second
case), then H∗ admits a quotient map onto Q[x1, . . . , xk]/(x1, . . . , xk−2, uk), a contradiction
to finite-dimensionality.

Applying δ2 as in the proof of Lemma 3.1, we find that

pk−1(x1, x2) = u1

after possibly changing basis in the degree four relations. In addition, in the case where uk−2
also has degree eight, we find that pk−2 is a multiple of u1, where uk−2 = pk−2(xk−1, xk)+qk−2
and qk−2 ∈ (x1, . . . , xk−2). In this case, we can replace uk−2 by uk−2 − µuk−1 for some µ ∈ Q
so that pk−2 = 0. In any case, we have shown that

u1, . . . , uk−2 ∈ (x1, . . . , xk−2).

We extend the argument from Lemma 3.1 by considering the degree 12 relation uk. Write

uk = pk(xk−1, xk) + qk

for some cubic polynomial pk and some qk ∈ (x1, . . . , xk−2). For degree reasons, we have that
δ3(qk) = 0 and hence that

6pk(x1, x2) = δ3(uk) ∈ (u1, . . . , uk).

Note that pk(x1, x2) has degree six and can be expressed as

pk(x1, x2) =
k∑
i=1

hiui

where hi ∈ Q[x1, . . . , xk] is a linear polynomial in the first k − 2 variables if |ui| = 4, where
hi ∈ Q if |ui| = 6, and where hi = 0 if |ui| ≥ 8.

We further claim that hi = 0 when |ui| = 6. Indeed, otherwise we can replace ui by
the expression

∑
hiui so that ui = pk(x1, x2). For the degree types under consideration,
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this implies that x1, x2, . . . , xk−2 generate a subalgebra K∗ that induces a splitting of H∗,
a contradiction. We may therefore assume that pk(x1, x2) = h1u1 in the first two cases and
that pk(x1, x2) = h1u1 + h2u2 in the third.

To derive a contradiction in the first two cases (where k = 4), recall that u1 = p3(x1, x2)
and hence that p4(x3, x4) is in the ideal

I = (x1, x2, p3(x3, x4)).

For degree reasons, it follows that I contains all four of the ui and hence that there exists a
projection of H∗ onto Q[x1, . . . , x4]/I. Since the latter space has infinite dimension, this is a
contradiction.

To derive a contradiction in the last case (where k = 5), we consider the expression

p5(x1, x2) = h1u1 + h2u2.

Write hi = li(x1, x2) + kix3 for some linear polynomials li and some ki ∈ Q, and write
u2 = u2,0(x1, x2) + x3u2,1(x1, x2, x3). We break the proof into cases.

• Suppose u2,1 = 0. This implies that u2 is a polynomial in x1 and x2. Since u1 =
p4(x1, x2) as well, we see that x1 and x2 generate a subalgebra that induces a splitting
of H∗, a contradiction.
• Suppose h2 = 0. This implies that u1 = p4 divides p5. Hence the ideal

I = (x1, x2, x3, p4(x4, x5))

contains all of the uj, a contradiction to finite-dimensionality of H∗.
• Suppose instead that u2,1 6= 0 and that h2 6= 0. Comparing coefficients of x23 and x33

in the above equation, we see that h2 = l2 6= 0. Similarly, comparing coefficients of
x3, we find that k1 6= 0.

Now l2 divides p5 − h1p4, which can be written as

(p5 − l1p4)− x3 (k1p4) .

It follows that l2 divides both p5 − l1p4 and k1p4 and hence p4 and p5 as well. Hence
the ideal

I = (x1, x2, x3, l2(x4, x5))

contains all five of the relations uj, and we once again have a contradiction to the
finite-dimensionality of H∗.

We have derived a contradiction in all cases, so the proof is complete. �

Next we consider the exceptional case arising in the case where |xk−1| + |xk| = 10 (see
Proposition 4.2):

Proposition 5.2. Let H∗ ∼= Q[x1, . . . , xk]/(u1, . . . , uk) be a positively elliptic algebra that
does not split. If the degree type is

(2, 2, 2, 4, 6; 4, 4, 6, 10, 12),

then H∗ does not admit a non-zero derivation of negative degree.

Proof. As in the proof of Proposition 4.2, we may assume that

δ(x4) = x1 and δ(x5) = p(x2, x3).
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Consider the ideal I = (x1, x2, x3, u5). For degree reasons, uj ∈ I for all j 6= 4. Since H∗ is
finite-dimensional, it follows that u4 6∈ I. After scaling u4, if necessary, we have

u4 = x4x5 + q4

with q4 ∈ I.
Note that q4 has degree ten. For degree reasons, it is a polynomial in Q≥3[x1, . . . , x5]. Note

that δ preserves this subspace. Since, in addition, x4δ(x5) = x4p(x2, x3) is in this subspace,
we have that

δ(u4) ∈ x1x5 + Q≥3[x1, . . . , x5].
On the other hand, δ(u4) is a degree eight element of the ideal (u1, . . . , u5). For degree
reasons, this implies that

δ(u4) =
3∑
i=1

hiui

with hi ∈ Q≥1[x1, . . . , x5]. But each uj is an element of Q≥2[x1, . . . , x5], so δ(uj) is as well.
Hence this equation shows that δ(u4) ∈ Q≥3[x1, . . . , x5], a contradiction. �

Finally, we consider the remaining two exceptional cases, which arise in the case where
|xk−1| + |xk| ≥ 12 (see Proposition 2.9). Note that, for the first time, the possibility that
δ has degree −4 is non-trivial. Indeed, in all previous cases, it is immediate to see that δ
having degree −4, −6,. . . implies that δ is zero on at least k−1 generators for degree reasons
and hence that δ = 0 by the k − 1 Lemma.

The first of the two remaining cases is simpler and uses ideas similar to previous proofs.

Proposition 5.3. If H∗ = Q[x1, . . . , xk]/(u1, . . . , uk) is a positively elliptic algebra with no
non-trivial subalgebra and degree type

(2, 4, 6, 6; 6, 8, 12, 12),

then H∗ does not admit a non-zero derivation with negative degree.

Proof. Suppose first that δ(x2) = x1, after possibly rescaling. By the Top-to-Bottom Lemma,
we see that δ(xi) = λix

2
1 for some λi ∈ Q for i ∈ {3, 4}. Replacing xi by xi − λix1x2, we find

that x1, x3, x4 ∈ ker(δ) in contradiction to the k − 1 Lemma. Hence we may assume that

δ(x1) = 0 and δ(x2) = 0.

Furthermore, we may assume that δ(x3) and δ(x4) are linearly independent elements in
degree four. In particular, δ cannot have degree −4 (or smaller), so δ has degree −2. After
choosing a suitable basis, we may assume that

δ(x3) = x21 and δ(x4) = x2.

Write
uj = pj(x3, x4) + qj

for j ∈ {3, 4}, where qj ∈ (x1, x2). Note that δ2(qj) = 0 for degree reasons, so

2pj(x
2
1, x2) = δ2(uj) ∈ (u1, . . . , u4).

This is an equation in degree eight, so we have

2pj(x
2
1, x2) = ax1u1 + bu2

for some a, b ∈ Q. Note that b = 0, since otherwise u1 and u2 are polynomials in x1 and x2,
which contradicts the assumption that H∗ does not have a non-trivial subalgebra.
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Since b = 0, we find that x1 divides pj(x
2
1, x2) for j ∈ {3, 4}. This implies that x21 divides

pj(x
2
1, x2), and hence both p3(x3, x4) and p4(x3, x4) are divisible by x3. It follows that

u1, . . . , u4 ∈ (x1, x2, x3),

which is a contradiction to the finite-dimensionality of H∗. �

Finally, we prove the last exceptional case. We wish to highlight that the proof in this case
differs from all of the previous arguments. Specifically, we do not choose our basis in order
to simplify the action of δ, as this does not appear to help us. Rather we choose our basis in
order to simplify the form of the relations.

Proposition 5.4. If H∗ = Q[x1, . . . , xk]/(u1, . . . , uk) is a positively elliptic algebra with no
non-trivial subalgebra and degree type

(2, 2, 6, 6; 4, 8, 12, 12),

then H∗ does not admit a non-zero derivation with negative degree.

Proof. Suppose δ is a non-zero derivation of negative degree, and note that δ has degree −2
or −4 by the Land in Zero Lemma. For j ∈ {3, 4}, write

uj = pj(x3, x4) + qj

where qj ∈ (x1, x2). Since qj has degree 12 and hence at most one x3 or x4 in each of its
monomials, qj ∈ ker(δ2).

Note that p3 and p4 are coprime polynomials. Indeed, if g(x3, x4) were a non-constant
common factor, then all relations uj are in the ideal I = (x1, x2, g(x3, x4)) and H∗ projects
onto the infinite-dimensional space Q[x1, . . . , x4]/I, a contradiction.

Since p3(x3, x4) and p4(x3, x4) are coprime, quadratic polynomials, we can choose bases of
span{x3, x4} and span{u3, u4} such that one of the following cases occurs:

(1) p3 = x23 and p4 = x24, or
(2) p3 = x23 − λx24 and p4 = x3x4 for some λ 6= 0.

Indeed, up to relabeling and scaling, we may assume that p3 contains an x23 term. Completing
the square and replacing x3 by something of the form x3 + µx4, we find that p3 = x23 − λx24
for some λ ∈ Q. Subtracting a multiple of u3 from u4 corresponds to subtracting the same
multiple of p3 from p4. We can do this so that p4 = µx3x4 + νx24 for some µ, ν ∈ Q. If µ = 0,
the claim follows by rescaling u4 and subtracting a multiple of u4 from u3. If µ 6= 0, we may
replace x3 by µx3 + νx4. This results in p4 = x3x4. Subtracting now a multiple of u4 from
u3 and scaling u3 once more, we find that we are in the second case of the claim. Note here
that λ 6= 0 because p3 and p4 are coprime.

Returning to the expressions for uj, we apply δ2 to get

2pj(δ(x3), δ(x4)) = δ2(uj) ∈ (u1, . . . , u4).

Suppose first that δ has degree −4, so that δ(xj) ∈ span{x1, x2} for j ∈ {3, 4}. Without
loss of generality, we may assume δ(x3) = x1 and δ(x4) = x2. Since p3 and p4 are coprime
polynomials, so are

δ(u3) = 2p3(x1, x2) and δ(u4) = 2p4(x1, x2).

But δ(u3), δ(u4) ∈ span{u1}, so we have a contradiction.
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Suppose instead that δ has degree −2. Since the expressions for pj(δ(x3), δ(x4)) are in
degree eight, we have equations of the form

2pj(δ(x3), δ(x4)) = lj(x1, x2)u1 + kju2

for j ∈ {3, 4}, where the lj are linear polynomials and the kj ∈ Q.
If some kj 6= 0, we may replace u2 by lj(x1, x2)u1 + kju2 and conclude that u1 and u2 are

polynomials in x1 and x2. This implies the existence of non-trivial subalgebra, a contradiction.
We may assume that k3 = k4 = 0, so that u1 divides both p3(δ(x3), δ(x4)) and p4(δ(x3), δ(x4)).

Using the simple formulas for p3 and p4, we see that one of the following happens:

(1) u1 divides both δ(x3)
2 and δ(x4)

2.
(2) u1 divides both δ(x3)

2 − λδ(x4)2 and δ(x3)δ(x4) for some λ ∈ Q \ {0}.
In either case, if u1 is irreducible, it follows that u1 divides both δ(x3) and δ(x4). Since all of
these elements have degree four, we find that δ(x3) and δ(x4) are linearly dependent. After
changing basis once more, we find a contradiction to the k − 1 Lemma.

Next if u1 = l1l2 is a product of coprime irreducibles, then each irreducible factor divides
both δ(x3) and δ(x4) by a similar argument. Moreover, since l1 and l2 are coprime, it follows
that u1 divides both of these elements, and we again have a contradiction.

Finally, if neither of these cases occurs, then u1 = λl2 for some λ ∈ Q and some linear
polynomial l = l(x1, x2). But now we can replace x1 or x2 by l(x1, x2) and derive the existence
of a non-trivial subalgebra of H∗, so we again have a contradiction. �
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