Torus representations with connected isotropy groups: Structure results and applications

Lee Kennard (Syracuse University) with Michael Wiemeler (University of Muenster) and Burkhard Wilking (University of Muenster)

Workshop on Curvature and Global Shape

University of Muenster

4 August 2021

First, the applications ...

Positive curvature (Toponogov): A Riemannian manifold *M* has sec > 0 if every geodesic triangle has angle sum $\alpha + \beta + \gamma > \pi$. **Examples:** In dim > 24, we only know Sⁿ, CPⁿ, and HPⁿ. **Grove Symmetry Program** (1990s): Study sec > 0 with symmetry. (Homogeneous spaces, cohomogeneity one manifolds, quotients, ...) **Constructions:**

- $\pi_1(M) \neq$ spherical space form groups [Sha98, Baz99, GS00, GSZ06]
- $\bullet\,$ a manifold with sec >0 [Dea11, GVZ11]
- manifolds with sec ≥ 0 , including all 5 homotopy $(\mathbb{S}^2 \times \mathbb{S}^2)/\mathbb{Z}_2$ [Tor19] and all 28 homotopy \mathbb{S}^7 [GM74, GZ00, GKS20]
- ...almost/quasi-positive curvature [PW99, Wil01, Wil02, Tap03, EK08, Ker11, Ker12, KT14, DRRW14, DeV18, DN20, DeV21]
- ... positive bi-orthogonal curvature [Bet17, ST20]

Obstructions: We focus today on torus symmetry: $T^d \subseteq \text{Isom}(M)$.

Topological rigidity: Positive curvature & torus symmetry **Setup**:

 (M^n,g) - closed, $\pi_1(M) = 1$, sec > 0 (e.g., \mathbb{S}^n , $\mathbb{CP}^{\frac{n}{2}}$, $\mathbb{HP}^{\frac{n}{4}}$)

If M^n admits T^d symmetry, what can we conclude about its topology?

- (Grove-Searle '94) Diffeomorphism rigidity if $d \ge \frac{n}{2}$.
- (Fang-Rong '05) Homeomorphism rigidity if $d \ge \frac{n}{2} 1$ $(n \ge 8)$.
- (Wilking '03, [DW04]) Homotopy rigidity if $d \ge \frac{n}{4} + 1$ $(n \ge 10)$.
- (Wilking '03) Q-cohomology rigidity^{*} if $d \ge \frac{n}{6} + 1$ $(n \ge 6000)$.
- (K.-Wiemeler-Wilking) \mathbb{Q} -cohomology rigidity if $d \ge 9$ and c.i.g.
- (K.-Wiemeler-Wilking [KWW], Nienhaus) Assume *n* is even.
 - \mathbb{Q} -cohomology rigidity if $d \ge 6$ and $H^{\text{odd}}(M; \mathbb{Q}) = 0$.
 - Euler characteristic positivity if $d \ge 4$.

Proof sketch: Reduction to the Main Lemma Study the isotropy representation $T^9 \rightarrow SO(T_x M)$ at a fixed point x. By assumption, this representation has connected isotropy groups.

Main Lemma: There exist $S^1 \subseteq T^2 \subseteq T^3 \subseteq T^4 \subseteq T^9$ such that

$$\underbrace{M_{x}^{\mathsf{T}^{4}} \hookrightarrow M_{x}^{\mathsf{T}^{3}} \hookrightarrow M_{x}^{\mathsf{T}^{2}} \hookrightarrow M_{x}^{\mathsf{S}^{1}} \hookrightarrow M}_{\dim M_{x}^{\mathsf{T}^{i}} \geq \frac{2}{3} \dim M_{x}^{\mathsf{T}^{i-1}}} \underbrace{M_{x}^{\mathsf{S}^{1}} \hookrightarrow M}_{\dim M_{x}^{\mathsf{S}^{1}} \geq \frac{3}{4} n}$$

Significance of $\frac{2}{3}$ and $\frac{3}{4}$? By the Connectedness Lemma [Wil03]... \implies If $M_x^{T^4}$ is a Q-cohomology S, CP, or HP, then so is M.

T⁴-theorem ([KWW], Nienhaus): $M_x^{T^4}$ is a Q-cohomol. S, CP, HP. Question: How do we prove the Main Lemma?

Lee Kennard (Syracuse)

The Main Lemma (K.-Wiemeler-Wilking)

Main Lemma: There exists c(d) < 1 such that, for any $T^d \rightarrow SO(V)$ with connected isotropy groups, there exists $S^1 \subseteq T^d$ with

$$rac{\operatorname{\mathsf{codim}}V^{\mathsf{S}^1}}{\operatorname{\mathsf{dim}}V} \leq c(d).$$

Moreover, c(d) decreases to 0 as $d \to \infty$, $c(6) = \frac{1}{3}$, and $c(9) = \frac{1}{4}$.

For $V = T_x M^n$ and T^9 ... there exists S^1 such that dim $M_x^{S^1} \ge \frac{3}{4}n$.

For generic representations, the ratio goes to 1 as dim $V
ightarrow \infty$.

Looking at involutions doesn't help: c(d) exists, but $\lim_{d\to\infty} c(d) = \frac{1}{2}$.

Main Lemma: Preparations

Fix a representation $\rho : \mathsf{T}^d \to \mathsf{SO}(V)$ with c.i.g.

Observation: The c.i.g. condition severely restricts the weights. **Non-example:** The representation $\rho : T^3 \to U(8) \subseteq SO(16)$ given by

$$\rho(z_1, z_2, z_3) = \mathsf{diag}(z_1, z_2, z_3, z_1^3, z_2\overline{z}_3, \underline{z_2z_3, z_1z_3, z_1z_2})$$

has multiple disconnected isotropy groups:

$$\mathsf{T}^3_{\underset{e_4}{e_5}}\cong\mathbb{Z}_3\times\mathsf{T}^2\ ,\ \ \mathsf{T}^3_{\underset{e_5}{e_5}+e_6}\cong\mathsf{S}^1\times\mathbb{Z}_2\ ,\ \ \mathsf{T}^3_{\underset{e_6}{e_5}+e_7+e_8}\cong\mathbb{Z}_2.$$

These are detected by the minors of the weight matrix:

Observation, formalized: If ρ has c.i.g. and weight matrix [I|H], then *H* is totally unimodular (t.u.) (i.e., every minor is 0 or ± 1).

Lee Kennard (Syracuse)

Main Lemma: Preparations, II

Strategy:

- (1) Classify totally unimodular matrices.
- (2) Solve the optimization problem.
- ... months and months of hacking away ...

Breakthrough: t.u. matrices were classified by Seymour in 1980.

Moreover t.u. matrices modulo a good notion of equivalence correspond to abstract objects called regular matroids. Modulo equivalence, we have:

$$\begin{array}{ccc} \text{Representations} \\ \rho \text{ with c.i.g.} \end{array} & \longleftrightarrow & \begin{array}{c} \text{Totally unimodular} \\ \text{matrices } [I|H] \end{array} & \longleftrightarrow & \begin{array}{c} \text{Regular} \\ \text{matroids } \mathcal{M} \end{array}$$

Theorem (Seymour '80): Classification of regular matroids.

Main Lemma: Preparations, III

Theorem (Seymour '80): If \mathcal{M} is a regular matroid, then \mathcal{M} is decomposable¹, graphic², co-graphic³, or the sporadic example⁴.

- ¹ A little more general than a direct sum of representations.
- 2 ${\cal M}$ is derived from a graph (via the oriented incidence matrix).

$$2 \xrightarrow{4} 3 \quad \longleftrightarrow \quad \left[\begin{array}{cccccccc} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ -1 & 0 & -1 & 0 & 1 \\ \hline 0 & -1 & 0 & -1 & -1 \end{array} \right]$$

³ The matroid dual is graphic. (With matrices, $[I|H] \stackrel{\text{dual}}{\longleftrightarrow} [I|-H^{T}]$.) ⁴ Corresponds $\rho_{\text{sporadic}} : T^5 \rightarrow U(10)$ with weights

$$\{e_i + e_j + e_k | 1 \le i < j < k \le 5\}.$$

Exercise: For ρ_{sporadic} , there exists codim $V^{S^1} \leq \frac{2}{5} \dim V$.

Proof of the Main Lemma, I

We seek upper bounds on

$$c(d) = \max_{\rho} \min_{S^{1} \subseteq T^{d}} \frac{\operatorname{codim} V^{S^{1}}}{\operatorname{dim} V}$$
$$= \max_{\{h_{i}\},\{m_{i}\}} \min_{v \in \mathbb{R}^{d}} \sum_{\langle v,h_{i} \rangle \neq 0} \mu_{i}$$
$$= \max_{\mathcal{M},\mu} \min_{A} \mu(\mathcal{M} \setminus A).$$

reps. ρ with c.i.g.

t.u. matrices $\{h_i\} \subseteq \mathbb{Z}^d$, multiplicities $m_i = \mu_i \dim V$

reg. matroids \mathcal{M} , probability distributions μ , hyperplanes A in \mathcal{M}

Lemma: If $\rho : \mathsf{T}^d \to \mathsf{SO}(V)$ has c.i.g. and is decomposable, then

$$c(\rho)^{-1} \ge c(d_1)^{-1} + c(d_2)^{-1}$$
 for some $d_1 + d_2 \ge d - 2$.

Corollary: For decomposable $\rho : \mathbb{T}^9 \to SO(V)$ with c.i.g., $c(\rho) \stackrel{**}{\leq} \frac{1}{4}$.

(

Proof of the Main Lemma, II: Graphic case

- 1. Add edges to put $G \subseteq K_{d+1}$ (complete graph).
- 2. Extend μ by assigning $\mu_i = 0$ to the new edges.
- 3. Observe that $c(\rho_G) \leq c(\rho_{K_{d+1}})$.

4. Solve the problem for one graph: $c(\rho_{K_{d+1}}) = \frac{2}{d+1}$.

Proof of the Main Lemma, III: Co-graphic case

graph $G \longrightarrow$ graphic matroid $\mathcal{M}[G] \longrightarrow$ dual matroid $\mathcal{M}[G]^*$. matrix $[I|H] \longrightarrow$ matrix $[I|-H^T]$

hyperplanes in $\mathcal{M}[G] \quad \longrightarrow \quad \text{circuits in } \mathcal{M}[G]^*$

Matroid theory lets us to translate the problem into a computation of

$$c_{ ext{co-graphic}}(d) = \max_{(G,\mu)} \min_{ ext{cycles } C} \mu(C)$$

over cubic graphs G on 3(d-1) edges with weights μ_i summing to 1.

Example: G = Heawood graph has 21 edges and girth 6.

Constructed from 7 hexagons, where each hexagon shares an edge with every other hexagon. First draw them in a row:

Proof of Main Lemma, IV: Co-graphic case

Example: G = Heawood graph has 21 edges and girth 6.

This extends to a periodic tiling:

 \implies *G* embeds in *T*²

$$\implies \min_{\text{cycles } C} \mu(C) \leq \frac{1}{7} \sum_{\text{hexagons } C_i} \lambda(C_i) = \frac{2}{7}.$$

In fact, $c(8) = c(G) = \frac{2}{7}$, so we cannot relax the T^9 to T^8 .

References

- Y.V. Bazaikin. A Manifold with Positive Sectional Curvature and Fundamental Group Z₃ ⊕ Z₃. Sib. Math. J., 40.834–836, 1999.
- R.G. Bettiol. Four-dimensional manifolds with positive biorthogonal curvature. <u>Asian J. Math.</u>, 21(2):391–395, 2017.
- O. Dearricott. A 7-manifold with positive curvature. <u>Duke Math. J.</u>, 158(2):307–346, 2011.
- J. DeVito. Rationally 4-periodic biquotients. <u>Geom. Dedicata</u>, 195:121–135, 2018.
- J. DeVito. Three new almost positively curved manifolds. Geom. Dedicata, 212:281–298, 2021.
- J. DeVito and E. Nance. Almost positive curvature on an irreducible compact rank 2 symmetric space. Int. Math. Res. Not. IMRN, (5):1346–1365, 2020.
- J. DeVito, R. DeYeso, III, M. Ruddy, and P. Wesner. The classification and curvature of biquotients of the form Sp(3)//Sp(1)². Ann. Global Anal. Geom., 46(4):389–407, 2014.
- A. Dessai and B. Wilking. Torus actions on homotopy complex projective spaces. Math. Z., 247:505–511, 2004.
- J.-H. Eschenburg and M. Kerin.
 Almost positive curvature on the Gromoll-Meyer sphere.

Proc. Amer. Math. Soc., 136(9):3263-3270, 2008.

F. Fang and X. Rong. Homeomorphism classification of

Homeomorphism classification of positively curved manifolds with almost maximal symmetry rank.

Math. Ann., 332:81-101, 2005.

- S. Goette, M. Kerin, and K. Shankar. Highly connected 7-manifolds and non-negative sectional curvature. Ann. of Math. (2), 191(3):829–892, 2020.
- D. Gromoll and W. Meyer. An exotic sphere with nonnegative sectional curvature. Ann. of Math. (2), 100:401–406, 1974.
- K. Grove and K. Shankar. Rank two fundamental groups of positively curved manifolds. J. Geom. Anal., 10(4):679–682, 2000.
- K. Grove, K. Shankar, and W. Ziller. Symmetries of Eschenburg spaces and the Chern problem.

Asian J. Math., 10(3):647-662, 2006.

- K. Grove, L. Verdiani, and W. Ziller. An exotic T₁S⁴ with positive curvature. <u>Geom. Funct. Anal.</u>, 21(3):499–524, 2011.
- K. Grove and W. Ziller. Curvature and symmetry of Milnor spheres. Ann. of Math. (2), 152(1):331–367, 2000.
- M. Kerin. Some new examples with almost positive curvature. Geom. Topol., 15(1):217–260, 2011.
- M. Kerin. On the curvature of biquotients. <u>Math. Ann.</u>, 352(1):155–178, 2012.
- M. Kerr and K. Tapp. A note on quasi-positive curvature conditions. <u>Differential Geom. Appl.</u>, 34:63–79, 2014.
- L. Kennard, M. Wiemeler, and B. Wilking. Splitting of torus representations and applications in the Grove symmetry program.

arxiv:2106.14723

- P. Petersen and F. Wilhelm. Examples of Riemannian manifolds with positive curvature almost everywhere. Geom. Topol., 3:331–367, 1999.
- P.D. Seymour. Decomposition of regular matroids. J. Combin. Theory Ser. B, 28(3):305–359, 1980.
- K. Shankar. On the fundamental groups of positively curved manifolds.

J. Differential Geom., 49(1):179-182, 1998.

B. Stupovski and R. Torres. Existence of Riemannian metrics with positive biorthogonal curvature on simply connected 5-manifolds.

Arch. Math. (Basel), 115(5):589-597, 2020.

- K. Tapp. Quasi-positive curvature on homogeneous bundles. J. Differential Geom., 65(2):273–287, 2003.
- R. Torres. An orbit space of a nonlinear involution of S² × S² with nonnegative sectional curvature. Proc. Amer. Math. Soc., 147(8):3523–3532, 2019.
- F. Wilhelm. An exotic sphere with positive curvature almost everywhere.
 - J. Geom. Anal., 11(3):519-560, 2001.
- B. Wilking. Manifolds with positive sectional curvature almost everywhere. Invent. Math., 148(1):117–141, 2002.
- B. Wilking. Torus actions on manifolds of positive sectional curvature. Acta Math., 191(2):259–297, 2003.