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First, the applications ...

Positive curvature (Toponogov): A Riemannian manifold M has
sec > 0 if every geodesic triangle has angle sum a + 5 + v > 7.
Examples: In dim > 24, we only know 5", CP" and HP".

Grove Symmetry Program (1990s): Study sec > 0 with symmetry.
(Homogeneous spaces, cohomogeneity one manifolds, quotients, .. .)
Constructions:

@ 71(M) # spherical space form groups [Sha98, Baz99, GS00, GSZ06]
@ a manifold with sec > 0 [Deall, GVZ11]

@ manifolds with sec > 0, including all 5 homotopy (S? x S?)/Z,
[Tor19] and all 28 homotopy S’ [GM74, GZ00, GKS20]

@ ...almost/quasi-positive curvature [PW99, Wil01, Wil02, Tap03,
EKO08, Kerll, Kerl2, KT14, DRRW14, DeV18, DN20, DeV21]

@ ...positive bi-orthogonal curvature [Bet17, ST20]
Obstructions: We focus today on torus symmetry: T¢ C Isom(M).
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Topological rigidity: Positive curvature & torus symmetry
Setup:

(M", g) - closed, m1(M) =1, sec > 0 (e.g., ", CP>, HP*)

If M" admits T symmetry, what can we conclude about its topology?
o (Grove-Searle '94) Diffeomorphism rigidity if d > 7.
e (Fang-Rong '05) Homeomorphism rigidity if d > 7 — 1 (n > 8).
o (Wilking '03, [DWO04]) Homotopy rigidity if d > 7 +1 (n > 10).
e (Wilking '03) Q-cohomology rigidity* if d > 2 +1  (n > 6000).

o (K.-Wiemeler-Wilking) ()-cohomology rigidity if d > 9 and c.i.g.

e (K.-Wiemeler-Wilking [KWW], Nienhaus) Assume n is even.
- Q-cohomology rigidity if d > 6 and H°d4(M; Q) = 0.
- Euler characteristic positivity if d > 4.

Lee Kennard (Syracuse) Torus representations: Structure and applications 2 /10



Proof sketch: Reduction to the Main Lemma
Study the isotropy representation T? — SO(T, M) at a fixed point x.
By assumption, this representation has connected isotropy groups.

Main Lemma: There exist S C T2 C T3 C T* C T? such that

4 3 2 1
MI s MT s M7 s M2 — M
~  ——
dim M" > 2 dim M]" dim M$' >3

Significance of 2 and 27 By the Connectedness Lemma [Wil03]. ..
— If /\/IXT4 is a Q-cohomology S, CP, or HIP, then so is M.

T*-theorem ([KWW)], Nienhaus): M is a Q-cohomol. S, CP, TP,

Question: How do we prove the Main Lemma?
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The Main Lemma (K.-Wiemeler-Wilking)

Main Lemma: There exists c(d) < 1 such that, for any T¢ —
SO(V) with connected isotropy groups, there exists S! C T¢ with

codim VS

< .
gmy_ = <@

Moreover, c(d) decreases to 0 as d — oo, ¢(6) = 3, and ¢(9) = 7

For V = T,M" and T°...there exists S! such that dim MS" > 2p.
For generic representations, the ratio goes to 1 as dim V — oo.

Looking at involutions doesn't help: ¢(d) exists, but lim ¢(d) =

1
d—o0 2
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Main Lemma: Preparations

Fix a representation p : T¢ — SO(V) with c.i.g.
Observation: The c.i.g. condition severely restricts the weights.
Non-example: The representation p: T° — U(8) C SO(16) given by

. 3 —
(21, 22, z3) = diag(z1, 22, 73, 71, 2223, 2223, 2173, 21 22)
has multiple disconnected isotropy groups:

~Stx7Z,, T: =~ 7.

e6t+ertes

T, 2Zsx T2, T,

es+ep
These are detected by the minors of the weight matrix:
10 03 0 011
01 0/j0 1 1 01
00 1/0 -1 1 1 O0
Observation, formalized: If p has c.i.g. and weight matrix [/|H],
then H is totally unimodular (t.u.) (i.e., every minor is 0 or +1).
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Main Lemma: Preparations, Il

Strategy:

(1) Classify totally unimodular matrices.

(2) Solve the optimization problem.

... months and months of hacking away ...

Breakthrough: t.u. matrices were classified by Seymour in 1980.

Moreover t.u. matrices modulo a good notion of equivalence
correspond to abstract objects called regular matroids. Modulo
equivalence, we have:

Representations Totally unimodular Regular
p with c.i.g. matrices [/|H] matroids M

Theorem (Seymour '80): Classification of regular matroids.
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Main Lemma: Preparations, Ill

Theorem (Seymour '80): If M is a regular matroid, then M is
decomposable!, graphic?, co-graphic3, or the sporadic example*.

L A little more general than a direct sum of representations.
2 M is derived from a graph (via the oriented incidence matrix).

1 1 0 0 0

0o 0 1 1 0

A 1 0 -1 0 1

2 3 0 -1 0 -1 —1

3 The matroid dual is graphic. (With matrices, [/[H] <% [/ —HT].)
* Corresponds psporadic T2 — U(10) with weights

{e+e+ell <i<j<k<5}

Exercise: FOr psporadic, there exists codim V' < 2dim V.
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Proof of the Main Lemma, |

We seek upper bounds on

(d) . codim V&' o
C = maxXx min —{— reps. p with c.1.g.
p sicte dimV ps- P &

= max min Z t.u. matrices {h;} C Z9,
B {hi},{m;} veRrd PR Hi multiplicities m; = p; dim V/
V

reg. matroids M,
= max min u(M\ A). probability distributions 4,
Mo A hyperplanes A in M
Lemma: If p: TY — SO(V) has c.i.g. and is decomposable, then
c(p)™t > c(dy)™t + c(do) ™! for some dy +do > d — 2.

*

Corollary: For decomposable p: T — SO(V) with c.i.g., c(p) <

*

1
4-
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Proof of the Main Lemma, Il: Graphic case

graph G

1. Add edges to put G C Ky

—

weight matrix for p

1 1 0 0 0 1
0 0 1 1 0 -1
-1 0 -1 0 1 0

0 -1 0 -1 -1 O

(complete graph).

2. Extend p by assigning j1; = 0 to the new edges.

3. Observe that c(p¢) < c(pk,.,)-

4. Solve the problem for one graph: c(pk,,,) =
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Proof of the Main Lemma, Ill: Co-graphic case
graph G — graphic matroid M[G] — dual matroid M[G]*.
matrix [/|H] —  matrix [/| = HT]

hyperplanes in M[G] —  circuits in M[G]*

Matroid theory lets us to translate the problem into a computation of

Ceo—graphic(d) = max Cyg;eig . 1(C)

over cubic graphs G on 3(d — 1) edges with weights 1; summing to 1.
Example: G = Heawood graph has 21 edges and girth 6.

Constructed from 7 hexagons, where each hexagon shares an edge
with every other hexagon. First draw them in a row:
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Proof of Main Lemma, IV: Co-graphic case

Example: G = Heawood graph has 21 edges and girth 6.

This extends to a perlodlc tlllng

— G embeds in T2

= min_p(C) < 3 NG =2
cycles hexagons C;

In fact, c(8) = c(G) = 2, so we cannot relax the T" to T°.
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