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First, the applications . . .

Positive curvature (Toponogov): A Riemannian manifold M has
sec > 0 if every geodesic triangle has angle sum α + β + γ > π.

Examples: In dim > 24, we only know Sn, CPn, and HPn.

Grove Symmetry Program (1990s): Study sec > 0 with symmetry.

(Homogeneous spaces, cohomogeneity one manifolds, quotients, . . . )

Constructions:

π1(M) 6= spherical space form groups [Sha98, Baz99, GS00, GSZ06]

a manifold with sec > 0 [Dea11, GVZ11]

manifolds with sec ≥ 0, including all 5 homotopy (S2 × S2)/Z2

[Tor19] and all 28 homotopy S7 [GM74, GZ00, GKS20]

. . . almost/quasi-positive curvature [PW99, Wil01, Wil02, Tap03,
EK08, Ker11, Ker12, KT14, DRRW14, DeV18, DN20, DeV21]

. . . positive bi-orthogonal curvature [Bet17, ST20]

Obstructions: We focus today on torus symmetry: Td ⊆ Isom(M).
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Topological rigidity: Positive curvature & torus symmetry
Setup:

(Mn, g) – closed, π1(M) = 1, sec > 0 (e.g., Sn, CP
n
2 , HP

n
4 )

If Mn admits Td symmetry, what can we conclude about its topology?

• (Grove-Searle ’94) Diffeomorphism rigidity if d ≥ n
2

.

• (Fang-Rong ’05) Homeomorphism rigidity if d ≥ n
2
− 1 (n ≥ 8).

• (Wilking ’03, [DW04]) Homotopy rigidity if d ≥ n
4

+ 1 (n ≥ 10).

• (Wilking ’03) Q-cohomology rigidity∗ if d ≥ n
6

+ 1 (n ≥ 6000).

• (K.-Wiemeler-Wilking) Q-cohomology rigidity if d ≥ 9 and c.i.g.

• (K.-Wiemeler-Wilking [KWW], Nienhaus) Assume n is even.

- Q-cohomology rigidity if d ≥ 6 and Hodd(M ;Q) = 0.

- Euler characteristic positivity if d ≥ 4.
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Proof sketch: Reduction to the Main Lemma

Study the isotropy representation T9 → SO(TxM) at a fixed point x .

By assumption, this representation has connected isotropy groups.

Main Lemma: There exist S1 ⊆ T2 ⊆ T3 ⊆ T4 ⊆ T9 such that

MT4

x ↪−→ MT3

x ↪−→ MT2

x ↪−→ MS1

x ↪−→ M︸ ︷︷ ︸
dimMTi

x ≥
2
3
dimMTi−1

x

︸ ︷︷ ︸
dimMS1

x ≥
3
4
n

Significance of 2
3

and 3
4
? By the Connectedness Lemma [Wil03]. . .

=⇒ If MT4

x is a Q-cohomology S, CP, or HP, then so is M .

T4-theorem ([KWW], Nienhaus): MT4

x is a Q-cohomol. S, CP, HP.

Question: How do we prove the Main Lemma?
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The Main Lemma (K.-Wiemeler-Wilking)

Main Lemma: There exists c(d) < 1 such that, for any Td →
SO(V ) with connected isotropy groups, there exists S1 ⊆ Td with

codimV S1

dimV
≤ c(d).

Moreover, c(d) decreases to 0 as d →∞, c(6) = 1
3
, and c(9) = 1

4
.

For V = TxM
n and T9. . . there exists S1 such that dimMS1

x ≥ 3
4
n.

For generic representations, the ratio goes to 1 as dimV →∞.

Looking at involutions doesn’t help: c(d) exists, but lim
d→∞

c(d) = 1
2
.

Lee Kennard (Syracuse) Torus representations: Structure and applications 4 / 10



Main Lemma: Preparations

Fix a representation ρ : Td → SO(V ) with c.i.g.
Observation: The c.i.g. condition severely restricts the weights.
Non-example: The representation ρ : T3 → U(8) ⊆ SO(16) given by

ρ(z1, z2, z3) = diag(z1, z2, z3, z
3
1 , z2z̄3, z2z3, z1z3, z1z2)

has multiple disconnected isotropy groups:

T3
e4
∼= Z3 × T2 , T3

e5+e6
∼= S1 × Z2 , T3

e6+e7+e8
∼= Z2.

These are detected by the minors of the weight matrix:[
1 0 0 3 0 0 1 1
0 1 0 0 1 1 0 1
0 0 1 0 −1 1 1 0

]
.

Observation, formalized: If ρ has c.i.g. and weight matrix [I |H],
then H is totally unimodular (t.u.) (i.e., every minor is 0 or ±1).
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Main Lemma: Preparations, II

Strategy:

(1) Classify totally unimodular matrices.

(2) Solve the optimization problem.

. . . months and months of hacking away . . .

Breakthrough: t.u. matrices were classified by Seymour in 1980.

Moreover t.u. matrices modulo a good notion of equivalence
correspond to abstract objects called regular matroids. Modulo
equivalence, we have:

Representations
ρ with c.i.g.

←→ Totally unimodular
matrices [I |H]

←→ Regular
matroids M

Theorem (Seymour ’80): Classification of regular matroids.

Lee Kennard (Syracuse) Torus representations: Structure and applications 6 / 10



Main Lemma: Preparations, III

Theorem (Seymour ’80): If M is a regular matroid, then M is
decomposable1, graphic2, co-graphic3, or the sporadic example4.

1 A little more general than a direct sum of representations.
2 M is derived from a graph (via the oriented incidence matrix).

2 3
4

1

←→


1 1 0 0 0
0 0 1 1 0
−1 0 −1 0 1
0 −1 0 −1 −1


3 The matroid dual is graphic. (With matrices, [I |H]

dual←→ [I |−HT ].)
4 Corresponds ρsporadic : T5 → U(10) with weights

{ei + ej + ek |1 ≤ i < j < k ≤ 5}.

Exercise: For ρsporadic, there exists codimV S1 ≤ 2
5

dimV .
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Proof of the Main Lemma, I

We seek upper bounds on

c(d) = max
ρ

min
S1⊆Td

codimV S1

dimV
reps. ρ with c.i.g.

= max
{hi},{mi}

min
v∈Rd

∑
〈v ,hi 〉6=0

µi
t.u. matrices {hi} ⊆ Zd ,

multiplicities mi = µi dimV

= max
M,µ

min
A

µ(M\ A).
reg. matroidsM,

probability distributions µ,
hyperplanes A inM

Lemma: If ρ : Td → SO(V ) has c.i.g. and is decomposable, then

c(ρ)−1 ≥ c(d1)−1 + c(d2)−1 for some d1 + d2 ≥ d − 2.

Corollary: For decomposable ρ : T9 → SO(V ) with c.i.g., c(ρ)
∗∗
≤ 1

4
.

Lee Kennard (Syracuse) Torus representations: Structure and applications 8 / 10



Proof of the Main Lemma, II: Graphic case

graph G −→ weight matrix for ρ

2 3
4

1

−→


1 1 0 0 0 1
0 0 1 1 0 −1
−1 0 −1 0 1 0
0 −1 0 −1 −1 0



1. Add edges to put G ⊆ Kd+1 (complete graph).

2. Extend µ by assigning µi = 0 to the new edges.

3. Observe that c(ρG ) ≤ c(ρKd+1
).

4. Solve the problem for one graph: c(ρKd+1
) = 2

d+1
.
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Proof of the Main Lemma, III: Co-graphic case

graph G −→ graphic matroid M[G ] −→ dual matroid M[G ]∗.

matrix [I |H] −→ matrix [I | − HT ]

hyperplanes in M[G ] −→ circuits in M[G ]∗

Matroid theory lets us to translate the problem into a computation of

cco−graphic(d) = max
(G ,µ)

min
cycles C

µ(C )

over cubic graphs G on 3(d − 1) edges with weights µi summing to 1.

Example: G = Heawood graph has 21 edges and girth 6.

Constructed from 7 hexagons, where each hexagon shares an edge
with every other hexagon. First draw them in a row:
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Proof of Main Lemma, IV: Co-graphic case

Example: G = Heawood graph has 21 edges and girth 6.

This extends to a periodic tiling:

=⇒ G embeds in T 2

=⇒ min
cycles C

µ(C ) ≤ 1
7

∑
hexagons Ci

λ(Ci) = 2
7
.

In fact, c(8) = c(G ) = 2
7
, so we cannot relax the T9 to T8.
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