Non-cyclic fundamental groups and the Grove symmetry program

Lee Kennard (Syracuse University) with Elahe Khalili Samani (Syracuse University) and Yusheng Wang (Beijing Normal University)

Topology/Geometry Zoom Seminar Hosted by the University of Oregon

21 April 2021

Positive curvature & fundamental groups

Today's focus: M – closed, positively curved Riemannian manifold. What can we say about $\pi_1(M)$?

Classical theorems (no symmetry needed – see [Zil14] for a survey) 1. (Bonnet-Myers [Mye35, Syn35]): $\pi_1(M)$ is a finite group.

2. (Synge [Syn36]): If dim M is even, then $\pi_1(M)$ is trivial or \mathbb{Z}_2 .

Main source of examples: Spherical space forms $\mathbb{S}^{2m-1}(1)/\Gamma$.

- Γ is trivial or $\mathbb{Z}_2 \Rightarrow$ spheres and real projective spaces.
- $\Gamma \cong \mathbb{Z}_{\ell} \Rightarrow$ lens spaces.

• $\Gamma \subseteq S^3$ give rise to some 3-D spherical space form groups (s.s.f.g.). Additional examples ($\Gamma = \pi_1(M)$):

- (Shankar '98) $\Gamma \subseteq SO(3)$ with both homog. and inhomog. quotient.
- [Baz99, GS00] $\Gamma\cong\mathbb{Z}_6\times\mathbb{Z}_6$ with inhomogeneous quotient.

Positive curvature, fundamental groups, & symmetry

Today's focus: M – closed, positively curved Riemannian manifold. What can we say about $\pi_1(M)$ assuming large symmetry?

Grove symmetry program (1990s):

- 1. Prove obstructions to positive curvature & large symmetry.
- 2. Discover edge cases where classifications break down.
- 3. Study those examples & use symmetry to construct examples.

See also: Extensions to (almost) non-negative sectional curvature, positive k-Ricci curvature, positive curvature for manifolds with density,....

Theorem (see Wilking-Ziller '18): If M is homogeneous, then $\pi_1(M)$ is a finite subgroup of S³ or SO(3).

Theorem (Wilking '06): If M^n has cohomogeneity $k \leq \sqrt{n/18} - 1$, then $\pi_1(M^n)$ is isomorphic to a spherical space form group.

Motivating the cyclic conjecture **Setup:** $(M^{2m-1}, \sec > 0)$ – closed with T^r symmetry (e.g., $S^{2r-1}/\mathbb{Z}_{\ell}$)

Theorem (Grove-Searle '94): $r \leq m$.

Theorem (Rong '05, Theorem D): If $\pi_1(M)$ is not cyclic, then $r \leq \frac{m}{2}$.

(If $2 \nmid m$, then $r < \frac{m}{2}$.)

Theorem (Frank-Rong-Wang '13): If $\pi_1(M)$ is not cyclic, then $r \leq \frac{m}{3}$ whenever 2 does not divide m.

(If $2 \nmid m$ and $3 \nmid m$, then $r < \frac{m}{3}$.)

Conjecture (Wang '10, K. '17): If $\pi_1(M)$ is non-cyclic, then $r \leq \frac{m}{p}$ where p is the minimum prime dividing m.

Models: Spherical space forms $\mathbb{S}^{2pr-1}/\Gamma$ with T^r -symmetry (K. '17).

Evidence for the cyclic conjecture

Setup: $(M^{2m-1}, \sec > 0)$ – closed with T^r symmetry. **Define:** *p* is the minimum prime dividing *m*.

Cyclic conjecture: If $r > \frac{m}{p}$, then $\pi_1(M)$ is cyclic.

- True if p = 2 (Rong) or p = 3 (Frank-Rong-Wang).
- True if \tilde{M} is a homology sphere (Wang '10, K. '17).
- True if the T^r -action has no fixed point and $m \ge m(p)$ (K. '17)

Theorem (K.-Wang): If p = 5 in the conjecture and $m \neq 5$, then

1. $\pi_1(M)$ is cyclic, or

2. $\pi_1(M)$ has a cyclic subgroup of index three and $m \equiv 2 \mod 3$.

Hardest case: The 49-dimensional base case(!). It relies on [Ron05, Ken17]. Confirms the conjecture for a new infinite family of dimensions, 49 + 60k.

Almost cyclic fundamental groups, I

Setup: M^n – closed, Riemannian manifold with sec > 0.

Theorem (Rong's Almost Cyclic Theorem '99 & '05):

S¹-symmetry implies $\pi_1(M^n)$ is w(n)-cyclic.

As a corollary,

T^{*r*}-symmetry implies $\pi_1(M^n)$ is $w_r(n)$ -cyclic

for some $w_r(n)$ such that $w_r(n) \searrow 1$ as $r \nearrow \frac{n+1}{4}$.

Problem: Estimate $w_r(n)$.

Theorem (K. '17 Theorem 8.2 + Khalili Samani '20): For $n \equiv 1(4)$, 1. $r \geq \frac{n}{12} + 3$ implies $w_r(n) \leq 5$. 2. $r \geq \frac{n}{20} + 5$ implies $w_r(n) \leq 27$.

Questions: Does $r \ge \delta n$ imply $w_r(n) \le c(\delta)$? Is $n \equiv 1 \mod 4$ necessary?

Almost cyclic fundamental groups, II

Theorem (Rong '99): T^2 -symmetry implies $\pi_1(M^n)$ is $w_2(n)$ -cyclic.

Theorem (K.-Khalili Samani): If \mathbb{T}^2 acts on M^7 and $\tilde{M} \sim_{\mathbb{Q}} \mathbb{S}^7$ or Eschenburg space, then $\pi_1(M)$ has a cyclic subgroup of index ≤ 12 .

Example: The "index 12" is sharp in both cases (see [Sha98, WZ18]): 1. T^2 acts on $S^7/2I$, where $2I \subseteq S^3$ is the binary icosohedral group. 2. T^2 acts on E^7/I , where $I = A_5 \subseteq SO(3)$ is the icosohedral group.

Theorem (K. '17): If \mathbb{T}^2 acts and $\tilde{M} \sim_{\mathbb{O}} \mathbb{S}^{13}$, then $\pi_1(M)$ is cyclic.

Theorem (Khalili Samani '20): If T^2 acts and $\tilde{M}^{13} \sim_{\mathbb{Z}} Bazaikin space$, then $\pi_1(M)$ has a cyclic subgroup of index 1, 2, 3, 6, or 9.

Question: Do Bazaikin spaces admit free actions by any non-cyclic group?

- Tools, I: Transformation groups & sec > 0
 - 1. Theory of transformation groups (sec $> 0 \Rightarrow T^{r-1}$ has a fixed point).
 - 2. Induction & error correcting codes (see Wilking '03)
 - \Rightarrow may assume the existence of fixed point sets with small codimension.
 - 3. Connectedness lemma (Wilking '03) implies periodicity in cohomology.
 - 4. Steenrod powers and secondary cohomology operations (K. '13, K. '17):
 - If dim M = 4k + 1, then \tilde{M} is a rational homology sphere.
 - If \tilde{M} is (2*p*)-periodic, then \tilde{M} is a \mathbb{Z}_p -homology sphere.

Tools, II: Group-theoretic restrictions on $\pi = \pi_1(M)$

1. (Davis-Weinberger '83): If $\tilde{M} \simeq \mathbb{S}^{4k+1}$ and sec > 0, then $\pi \cong \mathbb{Z}_{2^e} \times \Gamma$.

2. ([FRW13]): If π acts freely on (M^n , sec > 0) and on a totally geodesic N^{n-2} , then π has 2-periodic group cohomology and hence is cyclic.

3. (Smith 1930s and K. '17): If \tilde{M} has (2*p*)-periodic \mathbb{Z}_p -cohomology, then \tilde{M} is a \mathbb{Z}_p -homology sphere and $\mathbb{Z}_p \times \mathbb{Z}_p$ does not act freely on M.

Main Lemma (Khalili Samani, [Kha]): Let M be a closed, positively curved manifold, and assume that M has S¹-symmetry that commutes with a free, *homologically trivial* action by an odd-order group Γ .

For any maximal cyclic subgroup $\langle \alpha \rangle \subseteq \Gamma$, the order of $N(\langle \alpha \rangle)/\langle \alpha \rangle$ divides $\chi(M/S^1) - \chi(M^{S^1})$.

Generalizes obstructions in [Ken17] and Sun-Wang [SW09].

References

Y.V. Bazaĭkin.

A Manifold with Positive Sectional Curvature and Fundamental Group $\mathbb{Z}_3 \oplus \mathbb{Z}_3$. Sib. Math. J., 40:834–836, 1999.

J.F. Davis.

The surgery semicharacteristic. Proc. Lond. Math. Soc., 3(47):411 – 428, 1983.

- P. Frank, X. Rong, and Y. Wang. Fundamental groups of positively curved manifolds with symmetry. Math. Ann., 355:1425–1441, 2013.
- K. Grove and C. Searle.
 Positively curved manifolds with maximal symmetry rank.
 J. Pure Appl. Algebra, 91(1):137–142,

J. Pure Appl. Algebra, 91(1):137–142 1994.

K. Grove and K. Shankar. Rank two fundamental groups of positively curved manifolds.

J. Geom. Anal., 10(4):679-682, 2000.

L. Kennard. On the Hopf conjecture with symmetry.

Geom. Topol., 17:563-593, 2013.

📔 L. Kennard.

Fundamental groups of manifolds with positive sectional curvature and torus symmetry.

J. Geom. Anal., 27(4):2894–2925, 2017.

E. Khalili Samani. Obstructions to free actions on Bazaikin spaces. Transform, Groups, (to appear).

S.B. Myers. Riemannian manifolds with positive mean curvature. Duke Math. J., 1:42–43, 1935.

- X. Rong. Fundamental group of positively curved manifolds with local torus actions. Asian J. Math., 9(4):545–560, 2005.
- K. Shankar.
 On the fundamental groups of positively curved manifolds.
 J. Differential Geom., 49(1):179–182, 1998
- H. Sun and Y. Wang. Positive sectional curvature, symmetry and Chern's conjecture. Differential Geom. Appl., 27(1):129–136, 2009.
- J.L. Synge. On the neighborhood of a geodesic in Riemannian space. Duke Math. J., 1:527–537, 1935.

J.L. Synge.

On the connectivity of spaces of positive curvature.

Quat. J. Math., 7:316-320, 1936.

Y. Wang.

Fundamental groups of closed positively curved manifolds with almost discrete abelian group actions. *Acta Math. Sci. Ser. B. Engl. Ed.*, 30(1):203–207, 2010.

B. Wilking. Torus actions on manifolds of positive sectional curvature.

Acta Math., 191(2):259-297, 2003.

- B. Wilking. Positively curved manifolds with symmetry. Ann. of Math., 163:607–668, 2006.
- B. Wilking and W. Ziller. Revisiting homogeneous spaces with positive curvature. J. Reine Angew. Math., 738:313–328.

J. Reine Angew. Math., 738:313–328, 2018.

W. Ziller.

Riemannian manifolds with positive sectional curvature.

In Geometry of manifolds with non-negative sectional curvature, volume 2110 of Lecture Notes in Mathematics, pages 1–19. Springer, 2014.