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Positive curvature & fundamental groups

Today’s focus: M – closed, positively curved Riemannian manifold.

What can we say about π1(M)?

Classical theorems (no symmetry needed – see [Zil14] for a survey)

1. (Bonnet-Myers [Mye35, Syn35]): π1(M) is a finite group.

2. (Synge [Syn36]): If dimM is even, then π1(M) is trivial or Z2.

Main source of examples: Spherical space forms S2m−1(1)/Γ.

• Γ is trivial or Z2 ⇒ spheres and real projective spaces.

• Γ ∼= Z` ⇒ lens spaces.

• Γ ⊆ S3 give rise to some 3-D spherical space form groups (s.s.f.g.).

Additional examples (Γ = π1(M)):

• (Shankar ’98) Γ ⊆ SO(3) with both homog. and inhomog. quotient.

• [Baz99, GS00] Γ ∼= Z6 × Z6 with inhomogeneous quotient.
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Positive curvature, fundamental groups, & symmetry

Today’s focus: M – closed, positively curved Riemannian manifold.

What can we say about π1(M) assuming large symmetry?

Grove symmetry program (1990s):

1. Prove obstructions to positive curvature & large symmetry.

2. Discover edge cases where classifications break down.

3. Study those examples & use symmetry to construct examples.

See also: Extensions to (almost) non-negative sectional curvature, positive
k-Ricci curvature, positive curvature for manifolds with density,....

Theorem (see Wilking-Ziller ’18): If M is homogeneous, then π1(M)
is a finite subgroup of S3 or SO(3).

Theorem (Wilking ’06): If Mn has cohomogeneity k ≤
√
n/18 − 1,

then π1(Mn) is isomorphic to a spherical space form group.
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Motivating the cyclic conjecture

Setup: (M2m−1, sec > 0) – closed with Tr symmetry (e.g., S2r−1/Z`)

Theorem (Grove-Searle ’94): r ≤ m.

Theorem (Rong ’05, Theorem D): If π1(M) is not cyclic, then r ≤ m
2 .

(If 2 - m, then r < m
2 .)

Theorem (Frank-Rong-Wang ’13): If π1(M) is not cyclic, then r ≤ m
3

whenever 2 does not divide m.

(If 2 - m and 3 - m, then r < m
3 .)

Conjecture (Wang ’10, K. ’17): If π1(M) is non-cyclic, then r ≤ m
p

where p is the minimum prime dividing m.

Models: Spherical space forms S2pr−1/Γ with Tr -symmetry (K. ’17).
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Evidence for the cyclic conjecture

Setup: (M2m−1, sec > 0) – closed with Tr symmetry.

Define: p is the minimum prime dividing m.

Cyclic conjecture: If r > m
p , then π1(M) is cyclic.

• True if p = 2 (Rong) or p = 3 (Frank-Rong-Wang).

• True if M̃ is a homology sphere (Wang ’10, K. ’17).

• True if the Tr -action has no fixed point and m ≥ m(p) (K. ’17)

Theorem (K.-Wang): If p = 5 in the conjecture and m 6= 5, then

1. π1(M) is cyclic, or

2. π1(M) has a cyclic subgroup of index three and m ≡ 2 mod 3.

Hardest case: The 49-dimensional base case(!). It relies on [Ron05, Ken17].

Confirms the conjecture for a new infinite family of dimensions, 49 + 60k .
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Almost cyclic fundamental groups, I
Setup: Mn – closed, Riemannian manifold with sec > 0.

Theorem (Rong’s Almost Cyclic Theorem ’99 & ’05):

S1-symmetry implies π1(Mn) is w(n)-cyclic.

As a corollary,

Tr -symmetry implies π1(Mn) is wr (n)-cyclic

for some wr (n) such that wr (n)↘ 1 as r ↗ n+1
4 .

Problem: Estimate wr (n).

Theorem (K. ’17 Theorem 8.2 + Khalili Samani ’20): For n ≡ 1(4),

1. r ≥ n
12 + 3 implies wr (n) ≤ 5.

2. r ≥ n
20 + 5 implies wr (n) ≤ 27.

Questions: Does r ≥ δn imply wr (n) ≤ c(δ)? Is n ≡ 1 mod 4 necessary?
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Almost cyclic fundamental groups, II

Theorem (Rong ’99): T2-symmetry implies π1(Mn) is w2(n)-cyclic.

Theorem (K.-Khalili Samani): If T2 acts on M7 and M̃ ∼Q S7 or
Eschenburg space, then π1(M) has a cyclic subgroup of index ≤ 12.

Example: The “index 12” is sharp in both cases (see [Sha98, WZ18]):

1. T2 acts on S7/2I , where 2I ⊆ S3 is the binary icosohedral group.

2. T2 acts on E 7/I , where I = A5 ⊆ SO(3) is the icosohedral group.

Theorem (K. ’17): If T2 acts and M̃ ∼Q S13, then π1(M) is cyclic.

Theorem (Khalili Samani ’20): If T2 acts and M̃13 ∼Z Bazaikin space,
then π1(M) has a cyclic subgroup of index 1, 2, 3, 6, or 9.

Question: Do Bazaikin spaces admit free actions by any non-cyclic group?
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Tools, I: Transformation groups & sec > 0

1. Theory of transformation groups (sec > 0 ⇒ Tr−1 has a fixed point).

2. Induction & error correcting codes (see Wilking ’03)

⇒ may assume the existence of fixed point sets with small codimension.

3. Connectedness lemma (Wilking ’03) implies periodicity in cohomology.

4. Steenrod powers and secondary cohomology operations (K. ’13, K. ’17):

• If dimM = 4k + 1, then M̃ is a rational homology sphere.

• If M̃ is (2p)-periodic, then M̃ is a Zp-homology sphere.
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Tools, II: Group-theoretic restrictions on π = π1(M)

1. (Davis-Weinberger ’83): If M̃ ' S4k+1 and sec > 0, then π ∼= Z2e × Γ.

2. ([FRW13]): If π acts freely on (Mn, sec > 0) and on a totally geodesic
Nn−2, then π has 2-periodic group cohomology and hence is cyclic.

3. (Smith 1930s and K. ’17): If M̃ has (2p)-periodic Zp-cohomology, then
M̃ is a Zp-homology sphere and Zp × Zp does not act freely on M.

Main Lemma (Khalili Samani, [Kha]): Let M be a closed, positively
curved manifold, and assume that M has S1-symmetry that commutes
with a free, homologically trivial action by an odd-order group Γ.

For any maximal cyclic subgroup 〈α〉 ⊆ Γ, the order of N(〈α〉)/ 〈α〉
divides χ(M/S1)− χ(MS1).

Generalizes obstructions in [Ken17] and Sun-Wang [SW09].
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