Torus actions and positive curvature

Lee Kennard

Syracuse University

Joint with Michael Wiemeler (Münster) and Burkhard Wilking (Münster)

Virtual seminar on geometry with symmetries

6 May 2020

Positive curvature and symmetry

Setup: (M,g) – closed, orientable, sec > 0 (e.g., \mathbb{S}^n , \mathbb{CP}^n , \mathbb{HP}^n , \mathbb{OP}^2). (Other known examples in dim $M \in \{6,7,12,13,24\}$)

Conjecture (Hopf 1930s): sec $> 0 \implies M \neq \mathbb{S}^2 \times \mathbb{S}^2$.

Conjecture (Hopf 1930s): $\sec > 0 \implies \chi(M^{2n}) > 0$.

Grove symmetry program (1990s): Study sec > 0 with symmetry.

(Homogeneous spaces, cohomogeneity one manifolds, quotients,....)

Major developments:

- (Shankar '98) Resolution of Chern's 1965 question on $\pi_1(M)$.
- (Dearricott '11, Grove-Verdiani-Ziller '11) New example with sec > 0.
- (Gromoll-Meyer '74, Grove-Ziller '00, Goette-Kerin-Shankar '20)
 Many 2-connected 7-manifolds admit sec ≥ 0, including all exotic S⁷.

Positive curvature and torus symmetry

Setup: (M^{2n}, g) – closed, orientable, sec > 0 (e.g., \mathbb{S}^{2n} , \mathbb{CP}^n , $\mathbb{HP}^{\frac{n}{2}}$, \mathbb{OP}^2).

Conjecture (Hopf 1930s): $\sec > 0 \implies \chi(M^{2n}) > 0$.

Today's symmetry assumption: T^d acts isometrically with $d \ge C(n)$. **Theorem** (Grove-Searle '94): $C(n) = n \implies$ diffeomorphism rigidity. **Theorem** (Wilking '03): $C(n) = \frac{n}{2} + 1 \implies$ homotopy rigidity. **Theorem** (Amann-K. '14): $C(n) = 2\log_2(2n)$, $b_3 = 0 \Rightarrow \chi(M) > 0$.

Theorem (K.-Wiemeler-Wilking): $C(n) = \log_2(2n) \Rightarrow \chi(M)$ standard.

Theorem (K.-Wiemeler-Wilking): $C(n) = 5 \implies \chi(M) > 0.$

Compare: (Rong '99), (Dessai '05 & '07), (Weisskopf '17).

Tools, I: Existing tools and eliminating " $b_3 = 0$ " Setup: (M^{2n}, g) – closed, orientable, sec > 0, invariant under T^d. General structure theory

(General theory of transformation groups + classical results from sec > 0.)

+ Connectedness & periodicity lemmas (Wilking '03)

(Morse theory of geodesics + second variation of energy)

+ Rational four-periodicity theorem (K. '13)

(Steenrod squares and Steenrod powers; implies 4-periodic Betti numbers)

+ b₃ lemma (K.-Wiemeler-Wilking)

(Equivariant cohomology & global analysis of fixed point set)

 \Downarrow Bake at 350°F

For $F \subseteq M^{T^d}$, it suffices^{*} to find $T^d \supseteq H_i \supseteq H$ with $H_i/H \cong S^1$ such that the fixed point components $F \subseteq N_i \subseteq N$ satisfy $N_1 \pitchfork N_2$.

Tools, II: Reducing C(n) to 5

Question: How do we get transverse intersections?

Fix $p \in F \subseteq M^{T^d}$, and study isotropy representation $\rho : T^d \to SO(V)$.

We need to find $T^d \supseteq H_i \supseteq H$ such that $V^{H_1} \pitchfork V^{H_2}$ in V^H .

(If $C(n) \approx \log_2 n$, one can look at subgroups of $\mathbb{Z}_2^d \subseteq \mathsf{T}^d$.)

S¹-splitting (K.-Wiemeler-Wilking): If $\rho : T^d \to SO(V)$ is faithful and $d \ge 3$, there exists $H \subseteq T^d$ such that the induced representation $T^{d-1} = T^d/H \to SO(V^H)$ factors through a product representation $S^1 \times T^{d-2} \to SO(V_1) \times SO(V_2)$ for some decomposition $V^H = V_1 \oplus V_2$.

In V^{H} , the fixed point sets of S¹ and T^{*d*-2} intersect transversely.

* If $d \ge 5$, one can iterate to gain control over dimensions of $V^{H_i} \subseteq V^{H}$.

S¹ splitting, I: Examples & Reduction

S¹-splitting: Given $\rho : T^d \to SO(V)$ with $d \ge 3$, there exists $H \subseteq T^d$ such that the induced representation $T^{d-1} = T^d/H \to SO(V^H)$ factors through S¹ × $T^{d-2} \to SO(V_1) \times SO(V_2)$, for some $V^H = V_1 \oplus V_2$.

Example 1: $\rho(z_1, z_2, z_3) = \operatorname{diag}(z_1, z_2, z_3, z_1 \overline{z}_2, z_2 \overline{z}_3, z_1 \overline{z}_3) \in \mathrm{U}(6).$ Take $\mathrm{H} = \{(z, z, 1)\} \quad \rightsquigarrow \quad V^{\mathrm{H}} = \mathbb{C}\mathbf{e}_3 \oplus \mathbb{C}\mathbf{e}_4 \text{ and } \overline{\rho} \text{ splits.}$ **Example 2:** $\rho(a, b, c) = \operatorname{diag}(a, b, c, \underline{ab}, ac, bc, \underline{ab}, a\overline{c}, b\overline{c}, ab\overline{c}, \overline{abc}, \overline{abc}).$ First look at $\mathbb{Z}_2 \cong \langle (-1, -1, -1) \rangle \quad \rightsquigarrow \quad V^{\mathbb{Z}_2} = \mathbb{C}\mathbf{e}_4 \oplus \ldots \oplus \mathbb{C}\mathbf{e}_9.$ Then look at $\mathrm{H} = \mathbb{Z}_2 \cdot \{(1, 1, z)\}. \quad \rightsquigarrow \quad V^{\mathrm{H}} = \underline{\mathbb{C}}\mathbf{e}_4 \oplus \underline{\mathbb{C}}\mathbf{e}_7. \quad \rightsquigarrow \quad \overline{\rho} \text{ splits}$

Observation: The splitting holds if there exists a finite isotropy group F.

(Look at induced representation $T^d \cong T^d / F \to SO(V^F)$. Use induction.)

Reduction: In the proof, we may assume connected isotropy groups (c.i.g.)

Lee Kennard (Syracuse)

S¹-splitting, II: Torus representations with c.i.g.

Setup: Assume $\rho : \mathsf{T}^d \to \mathsf{SO}(V)$ has connected isotropy groups.

Non-example: The representation $\rho : T^3 \rightarrow U(6)$ given by

$$\rho(z_1, z_2, z_3) = \operatorname{diag}(z_1, z_1^3, z_2\overline{z}_3, \underline{z_2z_3}, z_1z_3, z_1z_2)$$

has disconnected isotropy groups

$$\mathsf{T}^3_{\frac{e_2}{e_2}}\cong \mathbb{Z}_3\times\mathsf{T}^2\ ,\ \ \mathsf{T}^3_{\frac{e_3+e_4}{e_3}}\cong\mathsf{S}^1\times\mathbb{Z}_2\ ,\ \ \mathsf{T}^3_{\frac{e_4+e_5+e_6}{e_3}}\cong\mathbb{Z}_2.$$

Example 1: $\rho : \mathsf{T}^4 \to \mathrm{U}(10) \subseteq \mathrm{SO}(20)$ given by diag $(z_1, z_2, z_3, z_4, z_1 \overline{z}_2, z_1 \overline{z}_3, z_1 \overline{z}_4, z_2 \overline{z}_3, z_2 \overline{z}_4, z_3 \overline{z}_4)$.

Example 2: $\rho : T^4 \to U(9) \subseteq SO(18)$ given by diag $(z_1, z_2, z_3, z_4, z_1 \overline{z}_3, z_1 \overline{z}_4, z_2 \overline{z}_3, z_2 \overline{z}_4, z_1 z_2 \overline{z}_3 \overline{z}_4)$.

Classification for d = 4: Any torus representation with c.i.g. is equivalent to a subrepresentation of one of these examples (ignoring multiplicities).

S¹-splitting, III: Proof

Setup: Assume $\rho : \mathsf{T}^d \hookrightarrow \mathsf{SO}(V)$ has connected isotropy groups. **Initial analysis:**

Build a matrix H whose columns are weights.

Lemma: c.i.g. \iff every $d \times d$ submatrix H' has det(H') = 0 or ± 1 .

For example:
$$\rho(z, w) = (z, w, zw, \overline{z}w)$$
 has $H = \begin{pmatrix} 1 & 0 & 1 & -1 \\ 0 & 1 & 1 & 1 \end{pmatrix}$.

Submatrix H' has det = 2, corresponding to

$$\mathsf{T}^2_{e_3+e_4} = \ker(\mathbf{zw}) \cap \ker(\mathbf{\bar{z}w}) = \langle (-1,-1) \rangle \cong \mathbb{Z}_2.$$

We may assume the e_i are weights, so *every submatrix has* det $= 0, \pm 1$. In particular, the weights $h_i \in \{-1, 0, 1\}^d$ and $\# \{h_i\} \leq 3^d$.

S¹-splitting, III: Proof (cont.)

Further combinatorial analysis:

(1) # weights $\leq \frac{d(d+1)}{2}$, and this is sharp. Independent of dim V!

(2) There is a basis h_1, \ldots, h_d of weights such that h_1 is the one and only weight in the affine subspace $h_1 + \langle h_3, \ldots, h_d \rangle$. (Implies the S¹-splitting.)

Example 1: $(z_1, z_2, z_3, z_4, z_1\bar{z}_2, z_1\bar{z}_3, z_1\bar{z}_4, z_2\bar{z}_3, z_2\bar{z}_4, z_3\bar{z}_4)$ has 10 weights. **e**₁ is the only weight in **e**₁ + $\langle e_2 - e_3, e_3 - e_4 \rangle$, so H = {(1, z, z, z)} gives rise to a splitting $\bar{\rho} : T^3 \rightarrow U(4)$ of the form $\bar{\rho}(x, y, z) = \text{diag}(x, y, z, yz)$. **Example 2:** $(z_1, z_2, z_3, z_4, z_1\bar{z}_3, z_1\bar{z}_4, z_2\bar{z}_3, z_2\bar{z}_4, z_1z_2\bar{z}_3\bar{z}_4)$.

Only one weight in $e_1 + e_2 - e_3 - e_4 + \langle e_2, e_3 \rangle$, so take $H = \{(\bar{z}, 1, 1, z)\}$.

Proof of main theorem

Setup: (M^{2n}, g) is closed, oriented, positively curved with T^5 symmetry.

Apply S¹-splitting twice to the isotropy representation at $p \in F \subseteq M^{T^5}$:

There exist $H^2 \subseteq T^5$ and three circles $S_i^1 \subseteq T^5/H$ such that $N_p^{S_i^1} \oplus N_p^{S_j^1}$.

4-periodicity + b_3 lemma $\Rightarrow N = M_p^{\mathsf{H}} \sim_{\mathbb{Q}} \mathbb{S}^m$, \mathbb{CP}^m , \mathbb{HP}^m , $\mathbb{S}^2 \times \mathbb{HP}^m$.

Localization theorem $\Rightarrow F \sim_{\mathbb{Q}} \mathbb{S}', \mathbb{CP}', \mathbb{HP}', \mathbb{S}^2 \times \mathbb{HP}', \mathbb{S}^2 \times \mathbb{CP}'.$

- $F \not\sim_{\mathbb{Q}} \mathbb{S}^2 \times \mathbb{CP}^l$ is easy (cohomology is not periodic).
- $F \not\sim_{\mathbb{Q}} \mathbb{S}^2 \times \mathbb{HP}^l$ is hard (global analysis of M^{T^5} and isotropy weights).

Related results (K.-Wiemeler-Wilking)

Theorem 1: If T^5 acts on a closed, orientable, positively curved M^{2n} , then every fixed point component of T^5 is a rational \mathbb{S}^k , \mathbb{CP}^k , or \mathbb{HP}^k .

Why work so hard for the cohomology of M^{T^5} ?

Theorem 2: If M^n (closed, orientable) admits an *equivariantly formal* T^8 -action such that every fixed point component of every $T^5 \subseteq T^8$ is a rational \mathbb{S} , \mathbb{CP} , or \mathbb{HP} , then M is a rational \mathbb{S}^n , $\mathbb{CP}^{\frac{n}{2}}$, or $\mathbb{HP}^{\frac{n}{4}}$.

- Partial converse to (Smith '38, Bredon '64): Fixed point components of torus actions on S / CP / HP are again S / CP / HP.
- Special case (GKM action): dim $(M^{T^8}) = 0$ and every dim $(M^{T^7}) \le 2$. We use results from Goertsches-Wiemeler '15.

Corollary: If T^8 acts on a closed, orientable, positively curved M^{2n} with $H^{\text{odd}}(M; \mathbb{Q}) = 0$, then M is a \mathbb{Q} -cohomology \mathbb{S}^{2n} , \mathbb{CP}^n , or $\mathbb{HP}^{\frac{n}{2}}$.

Ongoing work

Question 1: Do we need the assumption $H^{\text{odd}}(M; \mathbb{Q}) = 0$ in the T^8 result?

- The Bott-Grove-Halperin conjecture + the T^5 theorem $\Rightarrow H^{odd} = 0$.
- We can replace the assumption using further structural results for torus representations with connected isotropy groups (c.i.g.):

Theorem: There exists $d < \infty$ such that any closed, orientable M with positive curvature and a c.i.g. T^d -action is a rational S, \mathbb{CP} , \mathbb{HP} .

Question 2: Can we prove these results for \mathbb{Z}_2 -cohomology?

• Need to improve the rational four-periodicity theorem to a \mathbb{Z}_2 analogue:

Conjecture: If $H^*(M^n; \mathbb{Z}_2)$ is *k*-periodic, then it is four-periodic.

- (K. '13) implies $H^*(M^n; \mathbb{Z}_2)$ is 2^{*a*}-periodic, generalizing (Adem '52).
- If k divides n, (Adams '60) implies four-periodic.

References

M. Amann and L. Kennard. Topological properties of positively curved manifolds with symmetry. *Geom. Funct. Anal.*, 24(5):1377–1405, 2014.

G.E. Bredon.

The cohomology ring structure of a fixed point set.

Ann. of Math. (2), 80:524-537, 1964.

0. Dearricott.

A 7-manifold with positive curvature. Duke Math. J., 158(2):307-346, 2011.

🔒 A. Dessai.

Characteristic numbers of positively curved spin-manifolds with symmetry. *Proc. Amer. Math. Soc.*, 133(12):3657–3661, 2005.

🔒 A. Dessai.

Obstructions to positive curvature and symmetry. Adv. Math., 210(2):560-577, 2007.

S. Goette, M. Kerin, and K. Shankar. Highly connected 7-manifolds and non-negative sectional curvature. Ann. of Math. (2), 191(3):829–892, 2020.

- D. Gromoll and W. Meyer.
 An exotic sphere with nonnegative sectional curvature.
 Ann. of Math. (2), 100:401–406, 1974.
- K. Grove and C. Searle.
 Positively curved manifolds with maximal symmetry rank.
 J. Pure Appl. Algebra, 91(1):137–142,

J. Pure Appl. Algebra, 91(1):137–142 1994.

K. Grove, L. Verdiani, and W. Ziller. An exotic T₁S⁴ with positive curvature. Geom. Funct. Anal., 21(3):499–524, 2011.

O. Goertsches and M. Wiemeler. Positively curved GKM-manifolds. Int. Math. Res. Not. IMRN, (22):12015–12041, 2015.

K. Grove and W. Ziller. Curvature and symmetry of Milnor spheres. Ann. of Math. (2), 152(1):331–367, 2000.

W.-Y. Hsiang and J.C. Su. On the geometric weight system of topological actions on cohomology quaternionic projective spaces. *Invent. Math.*, 28:107–127, 1975. L. Kennard.

On the Hopf conjecture with symmetry. Geom. Topol., 17:563-593, 2013.

X. Rong.

Positive curvature, local and global symmetry, and fundamental groups. *Amer. J. Math.*, 121:931–943, 1999.

🔋 K. Shankar.

On the fundamental groups of positively curved manifolds.

J. Differential Geom., 49(1):179–182, 1998.

P.A. Smith. Transformations of a finite period. Ann. of Math., 39:127–164, 1938.

N. Weisskopf. Positive curvature and the elliptic genus. New York J. Math., 23:193–212, 2017.

B. Wilking. Torus actions on manifolds of positive sectional curvature.

Acta Math., 191(2):259-297, 2003.