Torus actions and positive curvature

Lee Kennard
Syracuse University

Joint with Michael Wiemeler (Münster) and Burkhard Wilking (Münster)

Virtual seminar on geometry with symmetries

6 May 2020
Positive curvature and symmetry

Setup: (M, g) – closed, orientable, $\sec > 0$ (e.g., S^n, $\mathbb{C}P^n$, $\mathbb{H}P^n$, $\mathbb{O}P^2$).

(Other known examples in $\dim M \in \{6, 7, 12, 13, 24\}$)

Conjecture (Hopf 1930s): $\sec > 0 \implies M \neq S^2 \times S^2$.

Conjecture (Hopf 1930s): $\sec > 0 \implies \chi(M^{2n}) > 0$.

Grove symmetry program (1990s): Study $\sec > 0$ with symmetry.

(Homogeneous spaces, cohomogeneity one manifolds, quotients,)

Major developments:

- (Shankar ’98) Resolution of Chern’s 1965 question on $\pi_1(M)$.
- (Dearricott ’11, Grove-Verdiani-Ziller ’11) New example with $\sec > 0$.
- (Gromoll-Meyer ’74, Grove-Ziller ’00, Goette-Kerin-Shankar ’20)
 Many 2-connected 7-manifolds admit $\sec \geq 0$, including all exotic S^7.
Positive curvature and torus symmetry

Setup: \((M^{2n}, g)\) – closed, orientable, sec > 0 (e.g., \(S^{2n}, \mathbb{C}P^n, \mathbb{H}P^n, \mathbb{O}P^2\)).

Conjecture (Hopf 1930s): \(\sec > 0 \implies \chi(M^{2n}) > 0\).

Today’s symmetry assumption: \(T^d\) acts isometrically with \(d \geq C(n)\).

Theorem (Grove-Searle ’94): \(C(n) = n \implies\) diffeomorphism rigidity.

Theorem (Wilking ’03): \(C(n) = \frac{n}{2} + 1 \implies\) homotopy rigidity.

Theorem (Amann-K. ’14): \(C(n) = 2 \log_2(2n), b_3 = 0 \implies \chi(M) > 0\).

Theorem (K.-Wiemeler-Wilking): \(C(n) = \log_2(2n) \implies \chi(M)\) standard.

Theorem (K.-Wiemeler-Wilking): \(C(n) = 5 \implies \chi(M) > 0\).

Compare: (Rong ’99), (Dessai ’05 & ’07), (Weisskopf ’17).
Tools, I: Existing tools and eliminating \(b_3 = 0 \)

Setup: \((M^{2n}, g)\) – closed, orientable, sec > 0, invariant under \(T^d \).

General structure theory

(General theory of transformation groups + classical results from sec > 0.)

+ Connectedness & periodicity lemmas (Wilking ’03)

(Morse theory of geodesics + second variation of energy)

+ Rational four-periodicity theorem (K. ’13)

(Steenrod squares and Steenrod powers; implies 4-periodic Betti numbers)

+ \(b_3 \) lemma (K.-Wiemeler-Wilking)

(Equivariant cohomology & global analysis of fixed point set)

⇓ Bake at 350\(^\circ\)F

\[
\text{For } F \subseteq M^{T^d}, \text{ it suffices}^* \text{ to find } T^d \supseteq H_i \supseteq H \text{ with } H_i/H \cong S^1 \text{ such that the fixed point components } F \subseteq N_i \subseteq N \text{ satisfy } N_1 \cap N_2.
\]
Tools, II: Reducing $C(n)$ to 5

Question: How do we get transverse intersections?

Fix $p \in F \subseteq M^{T^d}$, and study isotropy representation $\rho : T^d \to \text{SO}(V)$. We need to find $T^d \supseteq H_i \supseteq H$ such that $V^H_1 \cap V^H_2$ in V^H.

(If $C(n) \approx \log_2 n$, one can look at subgroups of $\mathbb{Z}_2^d \subseteq T^d$.)

S1-splitting (K.-Wiemeler-Wilking): If $\rho : T^d \to \text{SO}(V)$ is faithful and $d \geq 3$, there exists $H \subseteq T^d$ such that the induced representation $T^{d-1} = T^d / H \to \text{SO}(V^H)$ factors through a product representation $S^1 \times T^{d-2} \to \text{SO}(V_1) \times \text{SO}(V_2)$ for some decomposition $V^H = V_1 \oplus V_2$.

In V^H, the fixed point sets of S^1 and T^{d-2} intersect transversely.

* If $d \geq 5$, one can iterate to gain control over dimensions of $V^{H_i} \subseteq V^H$.
S¹-splitting: Given \(\rho : T^d \to SO(V) \) with \(d \geq 3 \), there exists \(H \subseteq T^d \) such that the induced representation \(T^{d-1} = T^d / H \to SO(V^H) \) factors through \(S¹ \times T^{d-2} \to SO(V_1) \times SO(V_2) \), for some \(V^H = V_1 \oplus V_2 \).

Example 1:
\[
\rho(z_1, z_2, z_3) = \text{diag}(z_1, z_2, z_3, z_1 \bar{z}_2, z_2 \bar{z}_3, z_1 \bar{z}_3) \in U(6).
\]
Take \(H = \{(z, z, 1)\} \) \(\sim \) \(V^H = C_{e3} \oplus C_{e4} \) and \(\bar{\rho} \) splits.

Example 2:
\[
\rho(a, b, c) = \text{diag}(a, b, c, ab, ac, bc, a\bar{b}, a\bar{c}, b\bar{c}, ab\bar{c}, a\bar{b}c, \bar{a}bc).
\]
First look at \(\mathbb{Z}_2 \cong \langle (-1, -1, -1) \rangle \) \(\sim \) \(V^{\mathbb{Z}_2} = C_{e4} \oplus \ldots \oplus C_{e9} \).
Then look at \(H = \mathbb{Z}_2 \cdot \{(1, 1, z)\} \). \(\sim \) \(V^H = C_{e4} \oplus C_{e7} \). \(\sim \) \(\bar{\rho} \) splits

Observation: The splitting holds if there exists a finite isotropy group \(F \).
(Look at induced representation \(T^d \cong T^d / F \to SO(V^F) \). Use induction.)

Reduction: In the proof, we may assume connected isotropy groups (c.i.g.)
S¹-splitting, II: Torus representations with c.i.g.

Setup: Assume $\rho: T^d \to \text{SO}(V)$ has **connected isotropy groups**.

Non-example: The representation $\rho: T^3 \to \text{U}(6)$ given by

$$\rho(z_1, z_2, z_3) = \text{diag}(z_1, z_2^3, z_2z_3, z_1z_3, z_1z_2)$$

has disconnected isotropy groups

$$T^3_{e_2} \cong \mathbb{Z}_3 \times T^2, \quad T^3_{e_3+e_4} \cong S^1 \times \mathbb{Z}_2, \quad T^3_{e_4+e_5+e_6} \cong \mathbb{Z}_2.$$

Example 1: $\rho: T^4 \to \text{U}(10) \subseteq \text{SO}(20)$ given by

$$\text{diag}(z_1, z_2, z_3, z_4, z_1\bar{z}_2, z_1\bar{z}_3, z_1\bar{z}_4, z_2\bar{z}_3, z_2\bar{z}_4, z_3\bar{z}_4).$$

Example 2: $\rho: T^4 \to \text{U}(9) \subseteq \text{SO}(18)$ given by

$$\text{diag}(z_1, z_2, z_3, z_4, z_1\bar{z}_3, z_1\bar{z}_4, z_2\bar{z}_3, z_2\bar{z}_4, z_1z_2\bar{z}_3\bar{z}_4).$$

Classification for $d = 4$: Any torus representation with **c.i.g.** is equivalent to a subrepresentation of one of these examples (ignoring multiplicities).
Setup: Assume $\rho : T^d \hookrightarrow \text{SO}(V)$ has connected isotropy groups.

Initial analysis:

Build a matrix H whose columns are weights.

Lemma: c.i.g. \iff every $d \times d$ submatrix H' has $\det(H') = 0$ or ± 1.

For example: $\rho(z, w) = (z, w, zw, \bar{z}w)$ has $H = \begin{pmatrix} 1 & 0 & 1 & -1 \\ 0 & 1 & 1 & 1 \end{pmatrix}$.

Submatrix H' has $\det = 2$, corresponding to

$$T^2_{e_3 + e_4} = \ker(zw) \cap \ker(\bar{z}w) = \langle (-1, -1) \rangle \cong \mathbb{Z}_2.$$

We may assume the e_i are weights, so every submatrix has $\det = 0, \pm 1$.

In particular, the weights $h_i \in \{-1, 0, 1\}^d$ and $\# \{ h_i \} \leq 3^d$.

Lee Kennard (Syracuse)
Torus actions and positive curvature
6 May 2020 7 / 10
Further combinatorial analysis:

(1) $\# \text{ weights } \leq \frac{d(d+1)}{2}$, and this is sharp. Independent of dim V!

(2) There is a basis h_1, \ldots, h_d of weights such that h_1 is the one and only weight in the affine subspace $h_1 + \langle h_3, \ldots, h_d \rangle$. (Implies the S^1-splitting.)

Example 1: $(z_1, z_2, z_3, z_4, z_1\bar{z}_2, z_1\bar{z}_3, z_1\bar{z}_4, z_2\bar{z}_3, z_2\bar{z}_4, z_3\bar{z}_4)$ has 10 weights. e_1 is the only weight in $e_1 + \langle e_2 - e_3, e_3 - e_4 \rangle$, so $H = \{(1, z, z, z)\}$ gives rise to a splitting $\bar{\rho} : T^3 \to U(4)$ of the form $\bar{\rho}(x, y, z) = \text{diag}(x, y, z, yz)$.

Example 2: $(z_1, z_2, z_3, z_4, z_1\bar{z}_3, z_1\bar{z}_4, z_2\bar{z}_3, z_2\bar{z}_4, z_1z_2\bar{z}_3\bar{z}_4)$. Only one weight in $e_1 + e_2 - e_3 - e_4 + \langle e_2, e_3 \rangle$, so take $H = \{ (\bar{z}, 1, 1, z) \}$.
Proof of main theorem

Setup: \((M^{2n}, g)\) is closed, oriented, positively curved with \(T^5\) symmetry.

Apply \(S^1\)-splitting twice to the isotropy representation at \(p \in F \subseteq M^{T^5}\):

There exist \(H^2 \subseteq T^5\) and three circles \(S^1_i \subseteq T^5/H\) such that \(N_{p_i} \cap N_{p_j}\).

4-periodicity + \(b_3\) lemma \(\Rightarrow N = M_p^H \cong \mathbb{Q} S^m, \mathbb{C}P^m, \mathbb{H}P^m, S^2 \times \mathbb{H}P^m\).

Localization theorem \(\Rightarrow F \cong \mathbb{Q} S^l, \mathbb{C}P^l, \mathbb{H}P^l, S^2 \times \mathbb{H}P^l, S^2 \times \mathbb{C}P^l\).

- \(F \not\cong \mathbb{Q} S^2 \times \mathbb{C}P^l\) is easy (cohomology is not periodic).
- \(F \not\cong \mathbb{Q} S^2 \times \mathbb{H}P^l\) is hard (global analysis of \(M^{T^5}\) and isotropy weights).
Theorem 1: If T^5 acts on a closed, orientable, positively curved M^{2n}, then every fixed point component of T^5 is a rational S^k, \mathbb{CP}^k, or \mathbb{HP}^k.

Why work so hard for the cohomology of M^{T^5}?

Theorem 2: If M^n (closed, orientable) admits an equivalently formal T^8-action such that every fixed point component of every $T^5 \subseteq T^8$ is a rational S, \mathbb{CP}, or \mathbb{HP}, then M is a rational S^n, \mathbb{CP}^n, or \mathbb{HP}^n.

- Partial converse to (Smith ’38, Bredon ’64): Fixed point components of torus actions on S, \mathbb{CP}, \mathbb{HP} are again S, \mathbb{CP}, \mathbb{HP}.
- Special case (GKM action): $\dim(M^{T^8}) = 0$ and every $\dim(M^{T^7}) \leq 2$. We use results from Goertsches-Wiemeler ’15.

Corollary: If T^8 acts on a closed, orientable, positively curved M^{2n} with $H^{\text{odd}}(M; \mathbb{Q}) = 0$, then M is a \mathbb{Q}-cohomology S^{2n}, \mathbb{CP}^n, or \mathbb{HP}^n.
Ongoing work

Question 1: Do we need the assumption $H_{\text{odd}}(M; \mathbb{Q}) = 0$ in the T^8 result?

- The Bott-Grove-Halperin conjecture + the T^5 theorem $\Rightarrow H_{\text{odd}} = 0$.
- We can replace the assumption using further structural results for torus representations with connected isotropy groups (c.i.g.):

Theorem: There exists $d < \infty$ such that any closed, orientable M with positive curvature and a c.i.g. T^d-action is a rational S, \mathbb{CP}, \mathbb{HP}.

Question 2: Can we prove these results for \mathbb{Z}_2-cohomology?

- Need to improve the rational four-periodicity theorem to a \mathbb{Z}_2 analogue:

Conjecture: If $H^*(M^n; \mathbb{Z}_2)$ is k-periodic, then it is four-periodic.

- (K. '13) implies $H^*(M^n; \mathbb{Z}_2)$ is 2^a-periodic, generalizing (Adem '52).
- If k divides n, (Adams '60) implies four-periodic.
References

M. Amann and L. Kennard.
Topological properties of positively curved manifolds with symmetry.

G.E. Bredon.
The cohomology ring structure of a fixed point set.

O. Dearricott.
A 7-manifold with positive curvature.

A. Dessai.
Characteristic numbers of positively curved spin-manifolds with symmetry.

A. Dessai.
Obstructions to positive curvature and symmetry.

S. Goette, M. Kerin, and K. Shankar.
Highly connected 7-manifolds and non-negative sectional curvature.

D. Gromoll and W. Meyer.
An exotic sphere with nonnegative sectional curvature.

K. Grove and C. Searle.
Positively curved manifolds with maximal symmetry rank.

K. Grove, L. Verdiani, and W. Ziller.
An exotic T_1S^4 with positive curvature.

O. Goertsches and M. Wiemeler.
Positively curved GKM-manifolds.

K. Grove and W. Ziller.
Curvature and symmetry of Milnor spheres.

W.-Y. Hsiang and J.C. Su.
On the geometric weight system of topological actions on cohomology quaternionic projective spaces.

L. Kennard.
On the Hopf conjecture with symmetry.

X. Rong.
Positive curvature, local and global symmetry, and fundamental groups.

K. Shankar.
On the fundamental groups of positively curved manifolds.

P.A. Smith.
Transformations of a finite period.

N. Weisskopf.
Positive curvature and the elliptic genus.

B. Wilking.
Torus actions on manifolds of positive sectional curvature.