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Positive curvature and symmetry

Setup: (M, g) – closed, orientable, sec > 0 (e.g., Sn, CPn, HPn, OP2).

(Other known examples in dimM ∈ {6, 7, 12, 13, 24})

Conjecture (Hopf 1930s): sec > 0 =⇒ M 6= S2 × S2.

Conjecture (Hopf 1930s): sec > 0 =⇒ χ(M2n) > 0.

Grove symmetry program (1990s): Study sec > 0 with symmetry.

(Homogeneous spaces, cohomogeneity one manifolds, quotients,. . . .)

Major developments:

• (Shankar ’98) Resolution of Chern’s 1965 question on π1(M).

• (Dearricott ’11, Grove-Verdiani-Ziller ’11) New example with sec > 0.

• (Gromoll-Meyer ’74, Grove-Ziller ’00, Goette-Kerin-Shankar ’20)

Many 2-connected 7-manifolds admit sec ≥ 0, including all exotic S7.
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Positive curvature and torus symmetry

Setup: (M2n, g) – closed, orientable, sec > 0 (e.g., S2n, CPn, HP
n
2 , OP2).

Conjecture (Hopf 1930s): sec > 0 =⇒ χ(M2n) > 0.

Today’s symmetry assumption: Td acts isometrically with d ≥ C (n).

Theorem (Grove-Searle ’94): C (n) = n =⇒ diffeomorphism rigidity.

Theorem (Wilking ’03): C (n) = n
2 + 1 =⇒ homotopy rigidity.

Theorem (Amann-K. ’14): C (n) = 2 log2(2n), b3 = 0 ⇒ χ(M) > 0.

Theorem (K.-Wiemeler-Wilking): C (n) = log2(2n)⇒ χ(M) standard.

Theorem (K.-Wiemeler-Wilking): C (n) = 5 =⇒ χ(M) > 0.

Compare: (Rong ’99), (Dessai ’05 & ’07), (Weisskopf ’17).
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Tools, I: Existing tools and eliminating “b3 = 0”

Setup: (M2n, g) – closed, orientable, sec > 0, invariant under Td .

General structure theory

(General theory of transformation groups + classical results from sec > 0.)

+ Connectedness & periodicity lemmas (Wilking ’03)

(Morse theory of geodesics + second variation of energy)

+ Rational four-periodicity theorem (K. ’13)

(Steenrod squares and Steenrod powers; implies 4-periodic Betti numbers)

+ b3 lemma (K.-Wiemeler-Wilking)

(Equivariant cohomology & global analysis of fixed point set)

⇓ Bake at 350◦F

For F ⊆ MTd
, it suffices∗ to find Td ⊇ Hi ⊇ H with Hi/H ∼= S1 such

that the fixed point components F ⊆ Ni ⊆ N satisfy N1 t N2.
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Tools, II: Reducing C (n) to 5

Question: How do we get transverse intersections?

Fix p ∈ F ⊆ MTd
, and study isotropy representation ρ : Td → SO(V ).

We need to find Td ⊇ Hi ⊇ H such that VH1 t VH2 in VH.

(If C (n) ≈ log2 n, one can look at subgroups of Zd
2 ⊆ Td .)

S1-splitting (K.-Wiemeler-Wilking): If ρ : Td → SO(V ) is faithful
and d ≥ 3, there exists H ⊆ Td such that the induced representation
Td−1 = Td/H → SO(VH) factors through a product representation
S1×Td−2 → SO(V1)×SO(V2) for some decomposition VH = V1⊕V2.

In VH, the fixed point sets of S1 and Td−2 intersect transversely.

∗ If d ≥ 5, one can iterate to gain control over dimensions of VHi ⊆ VH.
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S1 splitting, I: Examples & Reduction

S1-splitting: Given ρ : Td → SO(V ) with d ≥ 3, there exists H ⊆ Td

such that the induced representation Td−1 = Td/H→ SO(VH) factors
through S1 × Td−2 → SO(V1)× SO(V2), for some VH = V1 ⊕ V2.

Example 1: ρ(z1, z2, z3) = diag(z1, z2, z3, z1z̄2, z2z̄3, z1z̄3) ∈ U(6).

Take H = {(z , z , 1)}  VH = Ce3 ⊕ Ce4 and ρ̄ splits.

Example 2: ρ(a, b, c) = diag(a, b, c , ab, ac, bc, ab̄, ac̄ , bc̄ , abc̄, ab̄c, ābc).

First look at Z2
∼= 〈(−1,−1,−1)〉  V Z2 = Ce4 ⊕ . . .⊕ Ce9.

Then look at H = Z2 · {(1, 1, z)}.  VH = Ce4 ⊕ Ce7.  ρ̄ splits

Observation: The splitting holds if there exists a finite isotropy group F.

(Look at induced representation Td ∼= Td/F→ SO(V F). Use induction.)

Reduction: In the proof, we may assume connected isotropy groups (c.i.g.)
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S1-splitting, II: Torus representations with c.i.g.

Setup: Assume ρ : Td → SO(V ) has connected isotropy groups.

Non-example: The representation ρ : T3 → U(6) given by

ρ(z1, z2, z3) = diag(z1, z
3
1 , z2z̄3, z2z3, z1z3, z1z2)

has disconnected isotropy groups

T3
e2
∼= Z3 × T2 , T3

e3+e4
∼= S1 × Z2 , T3

e4+e5+e6
∼= Z2.

Example 1: ρ : T4 → U(10) ⊆ SO(20) given by

diag(z1, z2, z3, z4, z1z̄2, z1z̄3, z1z̄4, z2z̄3, z2z̄4, z3z̄4).

Example 2: ρ : T4 → U(9) ⊆ SO(18) given by

diag(z1, z2, z3, z4, z1z̄3, z1z̄4, z2z̄3, z2z̄4, z1z2z̄3z̄4).

Classification for d = 4: Any torus representation with c.i.g. is equivalent
to a subrepresentation of one of these examples (ignoring multiplicities).
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S1-splitting, III: Proof

Setup: Assume ρ : Td ↪→ SO(V ) has connected isotropy groups.

Initial analysis:

Build a matrix H whose columns are weights.

Lemma: c.i.g. ⇐⇒ every d × d submatrix H ′ has det(H ′) = 0 or ± 1.

For example: ρ(z ,w) = (z ,w , zw , z̄w) has H =

(
1 0 1 −1
0 1 1 1

)
.

Submatrix H ′ has det = 2, corresponding to

T2
e3+e4 = ker(zw) ∩ ker(z̄w) = 〈(−1,−1)〉 ∼= Z2.

We may assume the ei are weights, so every submatrix has det = 0,±1.

In particular, the weights hi ∈ {−1, 0, 1}d and # {hi} ≤ 3d .
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S1-splitting, III: Proof (cont.)

Further combinatorial analysis:

(1) # weights ≤ d(d+1)
2 , and this is sharp. Independent of dimV !

(2) There is a basis h1, . . . , hd of weights such that h1 is the one and only
weight in the affine subspace h1 + 〈h3, . . . , hd〉. (Implies the S1-splitting.)

Example 1: (z1, z2, z3, z4, z1z̄2, z1z̄3, z1z̄4, z2z̄3, z2z̄4, z3z̄4) has 10 weights.

e1 is the only weight in e1 + 〈e2 − e3, e3 − e4〉, so H = {(1, z , z , z)} gives
rise to a splitting ρ̄ : T3 → U(4) of the form ρ̄(x , y , z) = diag(x , y , z , yz).
Example 2: (z1, z2, z3, z4, z1z̄3, z1z̄4, z2z̄3, z2z̄4, z1z2z̄3z̄4).

Only one weight in e1 + e2 − e3 − e4 + 〈e2, e3〉, so take H = {(z̄ , 1, 1, z)}.
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Proof of main theorem

Setup: (M2n, g) is closed, oriented, positively curved with T5 symmetry.

Apply S1-splitting twice to the isotropy representation at p ∈ F ⊆ MT5
:

There exist H2 ⊆ T5 and three circles S1
i ⊆ T5/H such that N

S1i
p t N

S1j
p .

4-periodicity + b3 lemma ⇒ N = MH
p ∼Q Sm, CPm, HPm, S2 ×HPm.

Localization theorem ⇒ F ∼Q Sl , CPl , HPl , S2 ×HPl , S2 × CPl .

• F 6∼Q S2 × CPl is easy (cohomology is not periodic).

• F 6∼Q S2 ×HPl is hard (global analysis of MT5
and isotropy weights).
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Related results (K.-Wiemeler-Wilking)

Theorem 1: If T5 acts on a closed, orientable, positively curved M2n,
then every fixed point component of T5 is a rational Sk , CPk , or HPk .

Why work so hard for the cohomology of MT5
?

Theorem 2: If Mn (closed, orientable) admits an equivariantly formal
T8-action such that every fixed point component of every T5 ⊆ T8 is
a rational S, CP, or HP, then M is a rational Sn, CP

n
2 , or HP

n
4 .

• Partial converse to (Smith ’38, Bredon ’64): Fixed point components
of torus actions on S / CP / HP are again S / CP / HP.

• Special case (GKM action): dim(MT8
) = 0 and every dim(MT7

) ≤ 2.
We use results from Goertsches-Wiemeler ’15.

Corollary: If T8 acts on a closed, orientable, positively curved M2n

with Hodd(M;Q) = 0, then M is a Q-cohomology S2n, CPn, or HP
n
2 .
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Ongoing work

Question 1: Do we need the assumption Hodd(M;Q) = 0 in the T8 result?

• The Bott-Grove-Halperin conjecture + the T5 theorem ⇒ Hodd = 0.

• We can replace the assumption using further structural results for
torus representations with connected isotropy groups (c.i.g.):

Theorem: There exists d < ∞ such that any closed, orientable M
with positive curvature and a c.i.g. Td -action is a rational S, CP, HP.

Question 2: Can we prove these results for Z2-cohomology?

• Need to improve the rational four-periodicity theorem to a Z2 analogue:

Conjecture: If H∗(Mn;Z2) is k-periodic, then it is four-periodic.

• (K. ’13) implies H∗(Mn;Z2) is 2a-periodic, generalizing (Adem ’52).

• If k divides n, (Adams ’60) implies four-periodic.
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