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Abstract: In a recent paper, Ma and Holdener used turtle geometry and
polygon maps to show that the Thue-Morse sequence encodes the von Koch
curve. In the final paragraph of this same paper, they ask whether or not there
exist certain generalized Thue-Morse sequences that also encode the curve. Here
we answer this question in the affirmative, providing an infinite family of words
that generate generalized Thue-Morse sequences encoding the von Koch curve.

AMS Subject Classification: 68R15, 28A80
Key Words: Thue-Morse sequence, von Koch curve, recurrent curves, fractals

1. Introduction

Let Σ∗ be the monoid of words on the alphabet Σ = {F,L} under the operation
of concatenation (i.e. (w1, w2) !→ w1w2 for all w1, w2 ∈ Σ∗). Here “F” denotes a
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forward motion of the turtle by one unit in the plane and “L” a counterclockwise
rotation by the fixed angle θ = 2π/6. For each w =

∏k
i=1 FmiLni ∈ Σ∗,

define w ∈ Σ∗ by w =
∏k

i=1 LmiFni .1 We call w the negation of w, because
it is obtained from w by replacing L’s with F ’s and vice versa. Next define
σ : Σ∗ → Σ∗ by σ(w) = ww for all w ∈ Σ∗. The Thue-Morse turtle programs,
TMn ∈ Σ∗, are defined iteratively by setting TM0 = F and letting TMn+1 =
σ(TMn) = TMnTMn. We obtain

TM0 = F

TM1 = FL

TM2 = FLLF

TM3 = FLLFLFFL

TM4 = FLLFLFFLLFFLFLLF
...

In the proper closure of Σ∗, it can be seen that lim
n→∞

σn(F ) exists; the limit is

called the Thue-Morse sequence:

FLLFLFFLLFFLFLLFLFFLFLLFFLLFLFFL . . .

In 2005 J. Ma and J. Holdener used turtle geometry and polygon maps
to realize the Thue-Morse sequence as the limit of polygonal curves in the
plane [4]. After scaling, the sequence of turtle trajectories encoded by the even
iterates {TM2n}n≥1 converges to the Koch snowflake in the Hausdorff metric
(see Theorem 5.0.14 of [4] and Figure 1 below). Moreover, Ma and Holdener
showed that certain “generalized Thue-Morse sequences” also encode turtle
trajectories converging to the Koch snowflake.

In this paper we revisit the notion of generalized Thue-Morse turtle pro-
grams. In particular, we answer the question posed in the final paragraph of,
see [4]:

Is it possible to find a w ∈ Σ∗ not of the form TM2n or TM2n such

that w generates turtle programs {σ2n(w)}n≥k that encode turtle tra-

jectories converging to the Koch snowflake?

Answering this question in the affirmative, we provide an infinite family
of words of the form w = F aLbF a that encode the von Koch curve via the
iteration map σ.

1If we assume each mi and ni (except perhaps m1 and nk) is positive, then each w ∈ Σ∗

has a unique representation, and this operation is well-defined, see [2].
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Figure 1: Even Thue-Morse turtle trajectories converging to the von
Koch curve

2. Preliminaries

Turtle geometry arose in the early 1980’s with the work of the Logo group at
MIT, see [1], [3]. A turtle state is any pair (z, η) ∈ C × S1, where S1 = {z ∈
C : |z| =

√
zz = 1}. This can be interpreted as a position and a heading in

the complex plane. Throughout this paper, let ε = e2πi/6. We define turtle
transformations Tw : C× S1 → C× S1 for all w ∈ Σ∗ recursively as follows: For
all (z, η) ∈ C × S1, set

TF (z, η) = (z + η, η),

TL(z, η) = (z, εη).

To complete the definition, define Tw1w2
= Tw2

Tw1
for all w1, w2 ∈ Σ∗. Since L

and F generate Σ∗, this sufficiently defines Tw for all words w ∈ Σ∗.

It will be convenient to let g : Σ∗ → C be the mapping defined by g(w) = z
where (z, η) = Tw(0, 1). We will also refer to the mapping &g : Σ∗ → R × R,
which is related to g via the natural isomorphism between C and R × R.

We say that w ∈ Σ∗ generates the von Koch curve via the map σ if the
sequence of turtle trajectories encoded by the turtle programs {σ2n(w)}n≥0

converges to the von Koch curve in the Hausdorff metric (see [4] for more
clarification of this definition). Ma and Holdener provided the following char-
acterization of words generating the von Koch curve [4].

Theorem 1. A word w1 generates the Koch snowflake if and only if, for

some n ∈ N ∪ {0}, w = σn(w1) satisfies the following:

C1: |w|F ≡6 |w|L ≡6 ±2.
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C2:
−−→
g(w) and

−−→
g(w) point in opposite directions.

Associating the vector
−−→
g(w) ∈ R × R with g(w) ∈ C, C2 implies that

g(w) = reiφ and g(w) = sei(φ+π) for some r, s > 0 and φ ∈ R. Taking this
one step further, we see that the second condition is equivalent to g(w)/g(w) =
−s/r < 0, which in turn is equivalent to g(w)g(w) < 0. Hence our conditions
can be restated as:

C1: |w|F ≡6 |w|L ≡6 ±2.

C2: g(w)g(w) < 0.

Figure 2: Two-switch case #1, where w = F 2L4F 2

3. An Infinite Family that Works

We wish to determine whether there exists w ∈ Σ∗ not of the form TMn that
satisfies C1 and C2. By the symmetry of C1 and C2 we can assume, without
loss of generality, that the first letter in each word is F . Each result which
follows can then be easily translated into the general result allowing for words
which begin with an L.

For each w =
∏k

i=1 FmiLni ∈ Σ∗, define |w|S , the number of switches in w,
by

|w|S =

{

2k − 2, if nk = 0;
2k − 1, if nk > 0.
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Figure 3: Two-switch case #2, where w = F 26L4F 26

The number of switches in w is the number of times the letters in the word
“switch” from L to F or from F to L when reading from left to right.

For small switch numbers, we can characterize which words satisfy C1 and
C2. If |w|S = 0, for example, then w = F a for some a > 0. In this case,
g(w) = a and g(w) = 0. So g(w)g(w) = 0, contradicting C2. Thus there are no
words w with |w|S = 0 such that C1 and C2 are satisfied.

Moving on to the case, where |w|S = 1, we have w = F aLb for some a, b > 0.
So g(w) = a and g(w) = bεa. If w satisfied C2, then 0 = Im(g(w)g(w)) =
ab Im(εa), from which we conclude that 3 | a. But then w fails to satisfy C1
since |w|F = a *≡6 ±2. Thus there are no words w with |w|S = 1 such that C1
and C2 are satisfied.

Having shown that no word with fewer than two switches satisfies C1 and
C2, we now fully characterize words that have exactly two switches.

Theorem 2. A word w of the form w = F aLbF c satisfies C1 and C2 if

and only if a = c ≡6 −b ≡6 ±2.

Proof. First suppose w = F aLbF c where a = c ≡6 −b ≡6 2 (the case, where
a = c ≡6 −b ≡6 −2 is similar). Then

g(w) = a + cεb = a(1 + ε−2) = −aε2,

g(w) = bεa = bε2,
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Figure 4: Seven-switch case

and hence g(w)g(w) = −ab < 0. Since

|w|F = a + c ≡6 4 ≡ b = |w|L,

w satisfies conditions C1 and C2.

Now suppose w = F aLbF c satisfies C1 and C2. By C1, b = |w|L ≡6 ±2.
We assume b ≡6 2; proving the case b ≡6 −2 is similar. C2 implies

0 = Im(g(w)g(w)) = Im((a + cε−b)(bεa))

= Im((a + cε−2)(bεa)) = −
√

3

2
bc cos

πa

3
+

(

a −
c

2

)

b sin
πa

3
.

We know that 2a *= c since otherwise |w|F = a + c ≡3 ±0, contradicting C1.
Also, b > 0, so

√
3

(

c

2a − c

)

= tan
πa

3
.

Now since c > 0, we have tan(πa/3) *= 0 and, consequently, that a is congruent
to 1, 2, 4, or 5 modulo 6. In each of these cases tan(πa/3) = ±

√
3, so we have

c = ±(2a − c). The only positive integer solution to this is a = c, in which
case tan(πa/3) =

√
3. Thus a is congruent to 1 or 4 modulo 6. Using the full
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statement of C2, we have

0 > g(w)g(w) = (aε−1)(bεa) = abεa−1,

from which we obtain a ≡6 4 ≡6 −2, as desired.

We see that there are infinitely many words not of the form TMn that
encode the von Koch curve under iteration of the σ map. Some examples of
two-switch words that generate the Koch snowflake can be seen in the pictures
below.

4. Discussion and Future Work

Having completely mapped out the two-switch case, we turn our attention to
words with more than two switches. One can show that no word with three
switches satisfies C1 and C2, and we believe that for any number of switches
larger than three, a word exists that satisfies C1 and C2. For example, in the
four switch case, consider a word of the form

w = F aLbF cLbF a,

where a ≡6 −b ≡6 ±1 and c ≡6 2. This word satisfies C1 and C2. Also, the
words FLF 4L2F 5L, FLF 3L3F 9L4F , and FLFL3FL2FL4, which have 5, 6,
and 7 switches, respectively, satisfy C1 and C2. One seven-switch case can be
seen below.

Future work could involve rigorously proving these facts and classifying such
words that have more than three switches.
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